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Abstract

This paper analyzes the stability-related properties of Long Short-Term Memory (LSTM) networks and investigates their
use as the model of the plant in the design of Model Predictive Controllers (MPC). First, sufficient conditions guaranteeing
the Input-to-State stability (ISS) and Incremental Input-to-State stability (δ ISS) of LSTM are derived. These properties are
then exploited to design an observer with guaranteed convergence of the state estimate to the true one. Such observer is then
embedded in a MPC scheme solving the tracking problem. The resulting closed-loop scheme is proved to be asymptotically
stable. The training algorithm and control scheme are tested numerically on the simulator of a pH reactor, and the reported
results confirm the effectiveness of the proposed approach.

Keywords. Learning-based control; Nonlinear model predictive control; Output feedback predictive control; Long short-term
memory neural networks; Machine learning

I. INTRODUCTION

The availability of large and informative datasets, collected on plants during long periods of time and spanning many
different working conditions, is nowadays a typical starting point in control-related projects [29], [23]. Also thanks to the
recent introduction and popularity of novel tools and algorithms for extracting information from data [50], engineers and
scientists are increasingly focusing on data-based identification and control techniques [7], [4]. Several approaches are aimed
at the direct learning of the controller from data [47], these algorithms can be either based on a - possibly reference - model,
like in the Virtual Reference Feedback Tuning approach [9] and in Iterative Learning [7], or exploit model-free techniques,
like Reinforcement Learning [38]. On the other hand, indirect approaches are aimed at first finding a model of the plant,
based on which the controller is designed. In the latter category, a quite recent model class that has gained extraordinary
attention and popularity is the class of Neural Networks (NN) [24], which have proven to be effective in a large variety of
contexts and tasks, like image [36], speech [19], and handwriting recognition [20], prediction [52], and forecasting [53],
[26].

In the control context, and in order to account for the dynamic nature of the systems to be controlled, recurrent Neural
Networks (RNN) have already been studied [42], [12] and used in a number of applications [49], [39], [32], [37]. In RNN,
the output of the network is fed-back as input, so constituting a loop which allows to properly describe the dynamics of
the system. However, the tuning of RNN calls for a complex training algorithm, that is affected by the so-called “vanishing
(or exploding) gradient” problem [27]. Essentially, this prevents a proper training given the recursive equations featuring
the network, that cause a vanish (or explosion) of information and gradient over the iterations. Up to date, only a couple of
architectures proved to be able to practically overcome this issue, namely Echo State Networks (ESN) [30] and Long Short
Term Memory (LSTM) networks [21].

Despite their potential impact in the control field, the literature regarding the theoretical properties of RNNs is little, since
they are often tested empirically and with no theoretical guarantees, in favour of experimental evidence. This represents a
strong limitation on the use of RNN in the design of control systems, and motivates the analysis of their properties from a
control-theoretical perspective. For all these reasons, the properties of ESN, in terms of stability, and their use as suitable
models of the plant in the design of Model Predictive Control (MPC) regulators with stability guarantees, have been recently
analyzed [3]. Although ESsN have proven to be effective and characterized by a simple training procedure, LSTM [16]
are gaining a wider popularity. First introduced in 1997 [28], LSTM are nowadays widely used for several tasks [51], [46]
and in everyday’s devices, such as mobile phones and GPS navigators for speech recognition. This diffusion is due to their
flexibility and ability to recover long-term dependencies across the data thanks to their internal states. In the context of
dynamical systems and control, some very recent stability results about their autonomous, i.e. non forced, version have been
described by Deka et al. [11], [10], and Amrouche et al. [2], where also an analysis of their equilibria has been reported.

In this paper, we investigate the use of LSTM in the context of Model Predictive Control, extending some preliminary
investigations [6]. First, conditions on LSTM’s parameters (internal weights) guaranteeing the Input-to-State Stability[40]
(ISS) and the Incremental Input-to-State Stability[5] (δ ISS) properties are derived; notably, these conditions explicitly depend
on the model parameters and can be forced in the training phase of the network. Then, assuming that the trained net exactly
represents the model of the system, and relying on δ ISS, we design an observer guaranteeing that the estimated state
asymptotically converges to the true value. Based on the LSTM model and on the state observer, we then design an
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MPC control algorithm solving the tracking problem for constant state and input reference values and in presence of input
constraints. The stability of the equilibrium point is obtained with a suitable tuning of the MPC design parameters, i.e. the
state and control weighting functions and the terminal cost. Notably, no terminal constraints are required, which makes the
tuning procedure easier. A probabilistic method, based on the Scenario Approach [6], [8], is finally proposed to estimate
an upper bound of the model-plant mismatch, which is typically required to design robust MPC algorithms coping with the
possible presence of model uncertainties.

The performances of the overall control system are tested numerically on the simulator of a pH neutralization process
[22], that represents a well-known benchmark for nonlinear SISO systems. The modeling capability of the trained LSTM is
first quantitatively evaluated on a validation dataset, then closed-loop experiments are reported, witnessing the potentialities
of the proposed approach.

The paper is organized as follows: in Section II the dynamic model of LSTM is analyzed, and the conditions guaranteeing
the ISS and the δ ISS properties are established. In Section III the design of the stabilizing observer and of the MPC algorithm
is discussed, while in Section IV the numerical example is described. Finally, conclusions and hints for future work are
included in Section V. An Appendix reports the proofs of the theoretical results.
Notation and basic definitions.
We denote v( j) the j-th entry of vector v. 0a,b is the null matrix of dimension a× b, In is the identity matrix of order n.
Moreover, given a vector v, we denote ‖v‖ as the 2-norm of v, ‖v‖2

A = vT Av its squared norm weighted by matrix A, and
with ‖v‖∞ its infinity norm, i.e., ‖v‖∞ = max j=1,...,n |v( j)|, being n the number of entries of v. vT denotes vector transpose and
diag(v) the diagonal matrix with v on the diagonal. We denote with ‖A‖ and with ‖A‖∞ the induced 2-norm and ∞-norm of
A, respectively, while ρ(M) is the spectral radius of the square matrix M (i.e. maximum absolute value of its eigenvalues).
Given an interval [a,b] ⊂ R and a positive integer n we denote [a,b]n = {x ∈ Rn : x( j) ∈ [a,b],∀ j = 1, . . . ,n}. The same
notation is applied for open intervals. With reference to the discrete-time system

χ
+ = ϕ(χ,u), (1)

where χ is the state vector, u is the input vector, and ϕ(·) is a nonlinear function of the input and the state, χ+ indicates
the value of χ at the next time step. We indicate with χi(k) the solution to system (1) at time step k starting from the initial
state χ0i with input sequence ui(0), . . . , ui(k−1). For the sake of readability, time index k will be omitted where possible
and clear from the context. Let us now recall some definition, see [5], useful for the following developments.

Definition 1 (K -Function): A continuous function α : R≥0→ R≥0 is a class K function if α(s)> 0 for all s > 0, it is
strictly increasing, and α(0) = 0.

Definition 2 (K∞-Function): A continuous function α : R≥0 → R≥0 is a class K∞ function if it is a class K function
and α(s)→ ∞ for s→ ∞.

Definition 3 (K L -Function): A continuous function β : R≥0×Z≥0→R≥0 is a class K L function if β (s,k) is a class
K function with respect to s for all k, it is strictly decreasing in k for all s > 0, and β (s,k)→ 0 as k→ ∞ for all s > 0.

Definition 4 (ISS[6], [31]): System (1) is called input-to-state stable in X with respect to U , if there exist functions
β ∈K L and γv,γb ∈K∞ such that, for any k ∈Z≥0, any initial state χ0 ∈X , any input sequence {v(0),v(1), ... : v(τ)∈U },
and any bias bc, it holds that:

‖χ(k)‖ ≤ β (‖χ01‖,k)+ γv(max
h≥0
‖v(h)‖)+ γb(‖bc‖) (2)

Definition 5 (δ ISS[5]): System (1) is called incrementally input-to-state stable in X with respect to U , if there exist
functions βδ ∈K L and γδ ∈K∞ such that, for any k ∈Z≥0, any initial states χ01,χ02 ∈X , and any pair of input sequences
{v1(0),v1(1), ... : v1(τ) ∈U } and {v2(0),v2(1), ... : v2(τ) ∈U }, it holds that:

‖χ1(k)−χ2(k)‖ ≤ βδ (‖χ01−χ02‖,k)+ γδ (max
h≥0
‖v1(h)− v2(h)‖) (3)

The ISS property guarantees the vanishing contribution of initialization and the boundedness of the state trajectories, and
allows in this work to perform the safety verification of the network [6]. On the other hand, the δ ISS property is commonly
required for many purposes, e.g. to design MPC regulators [5], [34] and Moving Horizon estimators [44], [1], as it guarantees
that the effects of different initializations vanish, and that feeding the network with two different input sequences leads to
state trajectories with bounded distance. In the following we devise conditions under which the LSTM (4) are guaranteed
to feature these properties.

II. LSTM NETWORKS

A. State space form

The LSTM network, with input u ∈Rnu and output y ∈Rny , is described by the following system of equations [15], [17].

x+ =σg(Wf u+U f ξ +b f )◦ x+σg(Wiu+Uiξ +bi)◦σc(Wcu+Ucξ +bc) (4a)
ξ
+ =σg(Wou+Uoξ +bo)◦σc(x+) (4b)
y =Cξ +by (4c)



The vector χ =
[
xT ξ T ]T is the state of the network, so that (4) can be rewritten in the general form (1). In the related

terminology, x ∈ Rnx is named hidden state, while ξ ∈ Rnx is named output state (or cell).
In system (4), σg(x) = 1

1+e−x and σc(x) = tanh(x); when applied to a vector, we assume to apply them entry-wise. Also, ◦ is
the element-wise (Hadamard) product. The terms Wf ,Wi,Wo,Wc ∈ Rnx×nu , U f ,Ui,Uo,Uc ∈ Rnx×nx ,C ∈ Rny×nx are weighting
matrices and b f ,bi,bo,bc ∈ Rnx ,by ∈ Rny are biasing vectors.

Assumption 1 (Boundedness of u): The input is bounded, i.e.

u ∈U = [−umax,umax]
nu . (5)

Note that Assumption 1 is quite general. It could be associated to physical saturations of the input variable or can be achieved
by means of a proper normalization of the dataset employed for training [18].

Remark 1: In the LSTM model (4), the logistic and tanh activation functions have been considered. However, the proposed
theory can be readily extended to generic monotonically increasing upper- and lower-bounded functions, provided that
σc(0) = 0.

B. Properties of the system functions and bounds on the variables

First of all, note that, in view of their definitions,

σg(t) ∈ (0,1), ∀t ∈ R (6a)
σc(t) ∈ (−1,1), ∀t ∈ R, (6b)

Also, σg(t) and σc(t) are Lipschitz continuous functions [45] with Lipschitz constants Lg = 0.25 and Lc = 1, respectively,
and they are both strictly monotonic. In view of (6), see (4),

ξ ∈ (−1,1)nx , i.e. ξ( j) ∈ (−1,1),∀ j = 1, . . . ,nx. (7)

Rewriting equation (4) for each entry of the state vectors we obtain:

x+( j) =σg(Wf u+U f ξ +b f )( j) ◦ x( j)+σg(Wiu+Uiξ +bi)( j) ◦σc(Wcu+Ucξ +bc)( j) (8a)

ξ
+
( j) =σg(Wou+Uoξ +bo)( j) ◦σc(x+)( j) (8b)

Note that, in (8a), for each j ∈ 1, . . . ,nx,∣∣σg(Wf u+U f ξ +b f )( j)
∣∣≤ ∥∥σg(Wf u+U f ξ +b f )

∥∥
∞
≤ max

u∈U ,ξ∈(−1,1)nx

∥∥σg(Wf u+U f ξ +b f )
∥∥

∞

≤
∥∥∥∥ max

u∈U ,ξ∈(−1,1)nx
σg(Wf u+U f ξ +b f )

∥∥∥∥
∞

≤
∥∥∥∥σg

(
max

u∈U ,ξ∈(−1,1)nx
[Wf u+U f ξ +b f ]

)∥∥∥∥
∞

≤ σg

(
max

u∈U ,ξ∈(−1,1)nx
‖Wf u+U f ξ +b f ‖∞

)
≤ σg

(
‖
[
Wf umax U f b f

]
‖∞

)
= σ̄

f
g

(9)

where we relied on (5) and (7). With similar arguments we derive:∣∣σg(Wiu+Uiξ +bi)( j)
∣∣≤ σ̄

i
g = σg(‖

[
Wiumax Ui bi

]
‖∞) (10)∣∣σg(Wou+Uoξ +bo)( j)

∣∣≤ σ̄
o
g = σg(‖

[
Woumax Uo bo

]
‖∞) (11)∣∣σc(Wcu+Ucξ +bc)( j)

∣∣≤ σ̄
c
c = σc(‖

[
Wcumax Uc bc

]
‖∞) (12)

Also, by analyzing equation (8a), and recalling (9)-(12), we define an invariant set X =

{
x ∈ R : |x| ≤ σ̄ i

gσ̄ c
c

1−σ̄
f

g

}
for x( j),

i.e. such that
|x( j)(0)| ∈X =⇒ |x( j)(t)| ∈X , ∀t ≥ 0. (13)

Thanks to this definition, we can bound σc(x+)( j) in (8b), namely

|σc(x+)( j)| ≤
∣∣∣∣σc

(
σ̄ i

gσ̄ c
c

1− σ̄
f

g

)∣∣∣∣≤ σc

(
σ̄ i

gσ̄ c
c

1− σ̄
f

g

)
= σ̄

x
c (14)



Fig. 1: Control architecture

C. Stability properties of the LSTM networks

In the following, sufficient conditions guaranteeing the stability properties are presented. For compactness, all the proofs
are reported in the Appendix.

Theorem 1: The LSTM network (4) is ISS with respect to the input u and bias bc if ρ(A)< 1, where

A =

[
σ̄

f
g σ̄ i

g‖Uc‖
σ̄o

g σ̄
f

g σ̄o
g σ̄ i

g‖Uc‖

]
. (15)

Proposition 1: The Schur stability of the matrix A defined in (15) is ensured if the following inequality holds:

σ̄
f

g + σ̄
o
g σ̄

i
g‖Uc‖< 1. (16)

Theorem 2: Denoting

α =
1
4
‖U f ‖

σ̄ i
gσ̄ c

c

1− σ̄
f

g
+ σ̄

i
g‖Uc‖+

1
4
‖Ui‖σ̄ c

c ,

the LSTM network (4) is δ ISS with respect to the inputs u1 and u2 if ρ(Aδ )< 1, where

Aδ =

[
σ̄

f
g α

σ̄o
g σ̄

f
g ασ̄o

g +
1
4 σ̄ x

c ‖Uo‖

]
. (17)

Proposition 2: The Schur stability of the matrix Aδ defined in (17) is ensured if the following inequalities hold:

−1+ σ̄
f

g +ασ̄
o
g +

1
4

σ̄
x
c ‖Uo‖<

1
4

σ̄
f

g σ̄
x
c ‖Uo‖< 1. (18)

It is worth noting that the δ ISS property [5] implies the ISS property [31]. Indeed, this relationship also holds for the
sufficient criteria of Proposition 1 and Proposition 2, as stated in Corollary 1.

Corollary 1: Given the LSTM network (4), the satisfaction of the δ ISS sufficient condition (18) in Proposition 2 implies
the satisfaction of the ISS sufficient condition (16) in Proposition 1.

Remark 2: The conditions of Proposition 1 and Proposition 2 are explicit functions of the LSTM parameters. They can be
either checked to a-posteriori verify the ISS and δ ISS properties of the trained network, or they can be enforced during the
training procedure. In the latter case, depending on the training algorithm, they can be stated as hard nonlinear constraints,
or they can be relaxed by moving the constraint residual to the loss function of the training algorithm [18]. Additional details
on this procedure are reported in Section IV.

III. CONTROL DESIGN

A. Observer design

The use of the LSTM network for model predictive control purposes calls for the availability of a state estimate of the
plant, as represented in Figure 1. We propose the use of a tailored observer, guaranteeing a fast convergence of such estimate

to the real state value. The observer is a dynamical system with state χ̂ =
[
x̂T ξ̂ T

]T
and output estimate ŷ, taking the



following form:

x̂+ =σg[Wf u+U f ξ̂ +b f +L f (y− ŷ)]◦ x̂+σg[Wiu+Uiξ̂ +bi +Li(y− ŷ)]◦σc(Wcu+Ucξ̂ +bc)

ξ̂
+ =σg[Wou+Uoξ̂ +bo +Lo(y− ŷ)]◦σc(x̂+)

ŷ =Cξ̂ +by

(19)

where L f ,Li and Lo ∈ Rnx×ny are suitable observer gains to be properly selected. In the following, theoretical results
concerning the design of the state observer are reported, while the corresponding proofs are detailed in the Appendix.

Theorem 3: If the plant behaves according to (4) and ρ(Aδ )< 1, the observer (19) with gains L f , Li, and Lo, provides
a converging state estimation, i.e. χ̂(k)→ χ(k) as k→ ∞, if ρ(Â)< 1, with

Â = Â(L f ,Li,Lo) =

[
ˆ̄σ f

g α̂

ˆ̄σ f
g ˆ̄σo

g
1
4 σ̄ x

c ‖Uo−LoC‖+ ˆ̄σo
g α̂

]
, (20)

where

σg

[
Wf u+U f ξ̂ +b f +L f (y− ŷ)

]
≤ ˆ̄σ f

g = σg(‖[Wf umax U f−L fC b f L fC]‖∞), (21)

σg

[
Wiu+Uiξ̂ +bi +Li(y− ŷ)

]
≤ ˆ̄σ i

g = σg(‖[Wiumax Ui−LiC bi LiC]‖∞), (22)

σg

[
Wou+Uoξ̂ +bo +Lo(y− ŷ)

]
≤ ˆ̄σo

g = σg(‖[Woumax Uo−LoC bo LoC]‖∞), (23)

α̂ =
1
4
‖U f −L fC‖

σ̄ i
gσ̄ c

c

1− σ̄
f

g
+ σ̄

i
g‖Uc‖+

1
4
‖Ui−LiC‖σ̄ c

c . (24)

Note that the bounds (21)-(23) could be slightly more conservative than (9)-(11), due to the presence of extra terms
depending on L f , Li and Lo.

Proposition 3: A suitable tuning of state observer (19), guaranteeing the convergence of the state estimate, can be found
solving the nonlinear optimization problem

L∗f ,L
∗
i ,L
∗
o = arg min

L f ,Li,Lo
‖Â‖ (25a)

s.t. −1+ ˆ̄σ f
g +α ˆ̄σo

g +
1
4

σ̄
x
c ‖Uo−LoC‖< 1

4
ˆ̄σ f

g σ̄
x
c ‖Uo−LoC‖< 1 (25b)

It should be noted that (25) always admits a feasible solution, corresponding to L f = Li = Lo = 0nx,ny . Indeed, in such
case (corresponding to an open-loop state observer) Â = Aδ , which by assumption is stable. However, it would be advisable
to employ the output measurements to have a more reliable state estimation and a faster convergence of the state prediction
error to zero. Recalling that ρ(Â)≤ ‖Â‖, minimizing ‖Â‖ allows to make the observer faster in the worst case, and likely
faster in general, while its Schur stability is enforced via (25b).

B. Model Predictive Control design

This section discusses the design of a predictive control scheme that takes advantage of the LSTM network (4) as a
prediction model of the system. The objective of the controller is to stabilize the system towards a generic equilibrium point
denoted by the triplet (ū, χ̄, ȳ) (where ū ∈U and χ̄ =

[
x̄T ξ̄ T

]T ) by suitably acting on the control input u. Let us define

∆ =

[
‖x− x̄‖
‖ξ − ξ̄‖

]
∈ R2. (26)

The MPC scheme consists of solving, at each sampling time k, the following optimization problem

min
U(k)

J(U(k)),

s.t. u(k+ i) ∈U for i ∈ {0, . . . ,N−1},
χ(k+ i) = f (χ(k),u(k)) for i ∈ {1, . . . ,N},

(27)

where f (χ,u) is defined by the model dynamics (4a) and (4b), and U(k) =
[
u(k) . . . u(k+N−1)

]T is the sequence of
future control moves, which are bounded as in (5), consistently with Assumption 1. The terms χ(k+ i), with i ∈ {1, . . . ,N},
are the future state predictions from the current time instant to the prediction horizon N. These terms are obtained by iterating
(4) starting from the current state estimated by the state observer (19), i.e. χ(k) = χ̂(k). The cost function reads as

J(U(k))=
N−1

∑
i=0

(
‖χ(k+ i)−χ̄‖2

Q+‖u(k+ i)−ū‖2
R

)
+‖∆(k+N)‖2

P. (28)



Matrices Q � 0 and R � 0 are tuning parameters, and matrix P � 0 ∈ R2×2 satisfies the Lyapunov condition - under the
assumption that ρ(Aδ )< 1:

AT
δ

PAδ −P+qI2 ≺ 0, (29)

where q= ρ(Q). At time step k, the solution to the optimization problem is termed U(k|k)=
[
u(k|k)T . . . u(k+N−1|k)T ]T .

Only its first element is applied to the system according to the Receding Horizon principle, i.e.,

u(k) = u(k|k) (30)

The following result holds, ensuring asymptotic stability of the equilibrium (ū, χ̄, ȳ) under the proposed control law (30).
Theorem 4: If the plant behaves according to (4) with ρ(Aδ ) < 1, the state observer (19) is designed so as to fulfill

Theorem 3, e.g. by means of Proposition 3, then (ū, χ̄, ȳ) is an asymptotically stable equilibrium under the control law (30).
Proof: See the Appendix.

C. Model-plant mismatch and robustness

The result reported in Theorem 4 relies on the assumption that the plant is exactly described by the LSTM model (4) and
there is no model-plant mismatch. However, the LSTM model is obtained by means of a training (identification) procedure
starting from input-output data samples collected on the real plant. This raises the fundamental issues of reliability and
robustness. The robust design of state-feedback MPC algorithms for nonlinear systems has been considered in a number
of papers [41], [13], [35], while the output feedback case has also been analysed for systems affected by a (state and/or
input dependent) disturbance acting on the state equation [34]. However, to the best of the authors’ knowledge, no results
are available concerning the robust output-feedback MPC design for nonlinear black box estimated models, where also an
estimation of the size of the disturbance must be computed. For this reason, in this section we sketch a possible procedure
towards the design of robust MPC for black-box models learned by LSTM networks.
Assume that the real system is described by model (4) plus a disturbance w acting on the output, representing the effect of
the modeling error:

χ
+ = f (χ,u),

ym = g(χ,u)+w,
(31)

The function f (χ,u) is defined by (4a) and (4b), g(χ,u) is defined by (4c), ym is the measured output variable.
It follows that the output estimation error is

w = ym− y (32)

where y is the output of the model (4) fed by the same input sequence u = {u(0), ...,u(τ)}. Note that if Theorem 1 is
fulfilled and if the plant can be represented as (31), both the LSTM model and the plant are ISS, and thus w is guaranteed
to be bounded. In the following we describe an algorithm to estimate from the data, with a probabilistic accuracy guarantee,
the smallest ball W , with radius ρ∗w, containing w. Such algorithm relies on the Scenario Approach [6], [8], [25]. To this
end, let the initial state of the LSTM network χ0 be a random variable extracted from a set X0, with some probability
measure Pχ . Moreover, consider a class U τ of input sequences {u(0), . . . ,u(τ)}, τ being the adopted time horizon, such
that u(k) ∈U for all k = 0, . . . ,τ . Assume that U τ is characterized by some probability measure Pu. Then, the radius ρ∗w
is defined as the solution of

ρ
∗
w = min

ρw
ρw, (33a)

s.t. ‖w(χ0,u)‖∞ ≤ ρw ∀χ0 ∈X0, ∀u ∈U τ, (33b)

where w(χ0,u) is the disturbance sequence obtained feeding the trained LSTM (4) with the input sequence u and initial
state χ0.
Problem (33) cannot be solved directly, due to infinite cardinality of constraint (33b). Nonetheless, owing to the convexity
of (33) with respect to the optimization variable ρw, the Scenario Approach can be exploited to recast the optimization
problem as a finite-dimensional linear program, that allows to compute ρ∗w(ε,β ) such that, with confidence 1−β ,

Pχ,u {‖w(χ0,u)‖∞ > ρ
∗
w(ε,β )} ≤ ε. (34)

To do so, it is necessary to generate K realizations of the uncertain variables χ0 and u, denoted by χ
(i)
0 ,u(i), drawn according

to the respective probability density functions [6]. It has been shown [8] that ρ∗w(ε,β ) can be computed as

ρ
∗
w(ε,β ) = min

ρw
ρw,

s.t. ‖w(χ
(i)
0 ,u(i))‖∞ ≤ ρw for all i = 1, ...,K,

(35)



Fig. 2: Schematic layout of the PH neutralization process

provided that the number of scenarios satisfies the following inequality:

K ≥ 2
ε

(
ln

1
β
+d
)
. (36)

Once that the bound ρw is known, it is possible to design a state observer for system (31). With mathematical development
analogous to those of Theorem 3, and under similar conditions, it can be proven that the state estimation error does not
vanish, but asymptotically converges to an invariant set whose size depends on ρw itself. Based on this state estimate, robust
state-feedback [35] or output-feedback [34] control laws can be designed.

IV. ILLUSTRATIVE EXAMPLE

The benchmark example here considered to test the described identification and control algorithm is a PH neutralization
process [22], composed of two tanks, namely Tank 1 and Tank 2, see also Figure 2.

Tank 2 is fed by an acid stream q1 and outputs a flow q1e, but this hydraulic dynamics is neglected being much faster
than the others involved, so that it can be assumed q1 = q1e. Tank 1, also called reactor tank, is instead fed by three flows,
namely q1, a buffer flow q2 and an alkaline flow q3. q1 and q2 are not manipulated variables, and represent disturbances,
whereas a controlled valve modulates q3. On the output side the flow is q4, where the PH is measured. The objective of the
control scheme is to stabilize the PH concentration to a desired value. The plant is characterized by the following set of
differential equations with a constraint [22]:

ẋ(t) = f1(x(t))+ f2(x(t))u(t)+ f3(x(t))d(t),

c(x(t),y(t)) = 0,
(37)

where

f1(x(t)) =
[

q1

A1x3
(Wa1− x1),

q1

A1x3
(Wb1− x2),

1
A1

(q1−Cv4(x3 + z)n)

]T

,

f2(x(t)) =
[

1
A1x3

(Wa3− x1),
1

A1x3
(Wb3− x2),

1
A1

]T

,

f3(x(t)) =
[

1
A1x3

(Wa2− x1),
1

A1x3
(Wb2− x2),

1
A1

]T

,

c(x,y) = x1 +10y−14 +10−y + x2
1+2 ·10y−pK2

1+10pK1−y +10y−pK2
.

The parameters pK1 and pK2 are the first and second dissociation constants of the weak acid H2CO3. The nominal values
of the model parameters are given in Table I, where [M] = [mol

L ]. Overall, the simplified model considered is of order three,
with one input and one output.

A. Identification

The simulator of the plant has been forced with a multilevel pseudo-random signal (MPRS), so as to properly excite the
system, and the input-output data have been recorded with a sampling time Ts = 10s so as to collect about 30-40 samples
in a step response. Also, to test the algorithm in a more realistic scenario, a white noise was added both to the input and
output variables, with power 4× 10−4W . The generated dataset consists of 15 experiments for the training set, 4 for the



TABLE I: Nominal operating conditions of the pH system

z = 11.5cm Wa1 = 3.00 ·10−3M q1 = 16.6mL/s
Cv4 = 4.59 Wb1 = 0.00M q2 = 0.55mL/s
n = 0.607 Wa2 =−0.03M q3 = 15.6mL/s
pK1 = 6.35 Wb2 = 0.03M q4 = 32.8mL/s
pK2 = 10.25 Wa3 = 3.05 ·10−3M A1 = 207cm2

h1 = 14cm Wb3 = 5.00 ·10−5M Wa4 =−4.32 ·10−4M
pH = 7.0 Wb4 = 5.28 ·10−4M
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Fig. 3: Performances of the trained LSTM on the independent test dataset: LSTM prediction (purple dotted line) compared
to the real measured output (yellow line).

validation set, and 1 for the test set, where each experiment is a collection of Ns = 2000 {u(t),y(t)} samples.The datasets
have been normalized according to standard techniques [18], so that u ∈ [−1,1] and ym ∈ [−1,1].

The LSTM network described by (4) with nx = 7 neurons has been implemented and trained in Python 3.7 using Tensorflow
1.15. The training procedure has been carried out with the RMSProp algorithm [18], using randomly picked single experiments
as mini-batches, to minimize the following loss function

L =
1
Ns

Ns−1

∑
k=0
‖ym(k)− y(k)‖2

2+ (38a)

−ρ
+
1 max(r1,0)−ρ

−
1 min(r1,0)−ρ

+
2 max(r2,0)−ρ

−
2 min(r2,0), (38b)

where (38a) is the MSE between ym, i.e. the experiment’s measured output, and y, i.e. the output predicted by the LSTM
network. Furthermore, as hinted in Remark 2, in order to obtain a network enjoying the δ ISS property – and, in light of
Corollary 1, the ISS as well – the residuals of the inequalities (18), have been placed in the loss function, see (38b). These
residuals, denoted by r1 and r2, are defined as

r1 =−1+ σ̄
f

g +ασ̄
o
g +

1
4

σ̄
x
c ‖Uo‖−

1
4

σ̄
f

g σ̄
x
c ‖Uo‖, (39a)

r2 =
1
4

σ̄
f

g σ̄
x
c ‖Uo‖−1. (39b)

Note that in (38b) a piece-wise linear reward has been adopted so as to avoid an uselessly large fulfillment of (18) at expenses
of the fitting quality. Indeed, the weights ρ

±
1,2 have been chosen sufficiently small to ensure that the MSE dominates the loss

function (ρ+
1 = ρ

+
2 = 4 ·10−3, ρ

−
1 = ρ

−
2 = 2 ·10−5). An early-stopping rule has also been implemented to stop the training

procedure when for a pre-defined number of epochs the MSE over the validation set does not improve.
The trained network, as well as the datasets, is publicly available [48]. The modeling performances over an independent

test set are reported in Figure 3, where the measured output is compared to the prediction of the trained network, initialized
from a random value, and forced by the same input u. A quantitative performance index is the FIT [%] value, which is
computed as

FIT = 100
(

1− ‖ym−y‖
‖ym− yavg‖

)
(40)

where ym collects the output samples of the dataset, yavg is its average and y collects the output simulation of the trained
LSTM. Over the independent test dataset, the FIT scores 96.5%, mainly due to noise, thus confirming remarkable modeling
properties. The designed cost function (38) ensured the satisfaction of the δ ISS condition (18), with residuals r1 =−0.049
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Fig. 4: Closed loop trajectories. (a) Denormalized input trajectory (red line) compared to the lower and upper bounds (dashed
lines); (b) Denormalized closed-loop output trajectory (red line), compared to the output reference (dotted line).
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Fig. 5: Denormalized output estimated by the state observer (19) (red continuous line) compared to the real plant output
(blue dotted line).

and r2 =−0.997. Indeed, the parameters of the trained LSTM lead to σ̄
f

g = 0.82, σ̄ i
g = 0.51, σ̄ c

c = 0.93, σ̄o
g = 0.61, σ̄ x

c = 0.99,

‖U f ‖ = 0.01, ‖Ui‖ = 0.01, ‖Uc‖ = 0.4, ‖Uo‖ = 0.01, therefore Aδ =

[
0.819 0.215
0.502 0.135

]
and ρ(Aδ ) = 0.95, i.e. Aδ is Schur

stable.

B. Control

The designed observer follows (19) and is tuned according to (25), thus guaranteeing a realiable state estimate to the
MPC controller. The testing experiment is a reference tracking one. More specifically, the controller is started at time 500s,
and it is required to track a setpoint reference ȳ ∈ {7,8,6.5,6,7.5}, and to stabilize the associated equilibrium (ū, χ̄, ȳ) of
the LSTM model. Therefore, ū and χ̄ have been numerically computed from (4) by setting u(k) = ū, χ(k+1) = χ(k) = χ̄

and y(k) = ȳ.
The adopted prediction horizon is N = 10 steps, and matrices in the cost function of the controller are Q = I2nx , R = 5,

while the terminal weight matrix P is computed according to (29).
The closed-loop trajectory is reported in Figure 4, which shows that the controller is able to effectively manage the

plant, fulfilling control constraints and improving the transient responses. In particular, note that around 2000 s the input
is saturated to its upper bound. To confirm the validity of the estimate provided by the observer, in Figure 5, the output
estimate ŷ and the real plant output are compared, showing the convergence of the estimate, save for a static mismatch due
to the model (LSTM) - plant (pH simulator) gain mismatch when pH ' 8.

V. CONCLUSION

In this paper Long Short Term Memory networks have been investigated from a system theoretical perspective, and
sufficient conditions for their ISS and δ ISS stability properties have been provided in terms of their internal weights. A



novel formulation of the optimization problem to train the NN, including constraints, has been employed. The obtained NN
has been then used as a prediction model in a MPC scheme endowed with an observer to suitably provide the initial state
estimate, with guaranteed convergence of the estimate and asymptotic stability of the closed-loop equilibrium. Numerical
results on a nonlinear SISO benchmark confirm the theoretical findings in the case of a tracking problem.

Future work will be devoted to enhancing the robustness of the control algorithm with respect to model-plant mismatch.
To this regard, the preliminary analysis developed in Section III-C for the estimation of a bound on the mismatch can be
extended, and other approaches can be studied, like the one presented by Fazlyab et al. [14], where however only feed-forward
networks have been considered.

VI. APPENDIX

The following properties will be used in the proofs:
Property 1: Given vectors v1,v2 ∈ Rn, v1 ◦ v2 = diag(v1)v2.
Property 2: Given a diagonal matrix A, ‖A‖= ρ(A), and the eigenvalues of A are its diagonal entries.
Property 3: Given two vectors a,b ∈ Rn and a positive definite matrix M � 0, it holds that, for any ν 6= 0,

‖a+b‖2
M ≤ (1+ν

2)‖a‖2
M +(1+

1
ν2 )‖b‖

2
M.

First, let us introduce an instrumental Lemma which will be required in the following theoretical contribution.
Lemma 1: Given a 2×2 real matrix A, it is Schur stable if and only if

−1−a < b < 1, (41)

where, being Ai j the element of A in position (i, j), a =−A11−A22 and b = A11A22−A12A21.
Proof: [Proof of Lemma 1] To characterize the stability of a 2×2 matrix A, let us compute its characteristic equation

p(λ ) = det(λ I2−A) = λ
2 +aλ +b = 0 (42)

where a = −A11−A22 and b = A11A22−A12A21. We rely on Jury’s criterion [33], providing a necessary and sufficient
condition, to enforce stability of A. The Jury table of p(λ ) is

1 a b
1−b2 a(1−b)

(1−b2)2−a2(1−b)2

(1−b2)

(43)

Jury’s criterion requires to force the first column to have all positive entries. This leads, with standard arguments and recalling
that a < 0, to the set of conditions: {

b2 < 1
1−b2 >−a(1−b)

(44)

which can be further synthesized in
−1−a < b < 1 (45)

Proof: [Proof of Theorem 1] Let us consider the first LSTM state equation, i.e. (4a). Taking the norm we get the
following inequality

‖x+‖ ≤
∥∥σg

(
Wf u+U f ξ +b f

)∥∥‖x‖+∥∥σg (Wiu+Uiξ +bi)
∥∥‖σc (Wcu+Ucξ +bc)‖ .

In view of Properties 1 and 2, and owing to the Lipschitzianity of σc and σg, recalling (9)-(14), it holds that

‖x+‖ ≤ σ̄
f

g ‖x‖+ σ̄
i
g [‖Wc‖‖u‖+‖Uc‖‖ξ‖+‖bc‖] . (46)

Then, with similar arguments,

‖ξ+‖ ≤
∥∥σg (Wou+Uoξ +bo)

∥∥‖σc(x+)‖ ≤ σ̄
o
g ‖x+‖ ≤ σ̄

o
g σ̄

f
g ‖x‖+ σ̄

o
g σ̄

i
g‖Uc‖‖ξ‖+ σ̄

o
g σ̄

i
g [‖Wc‖‖u‖+‖bc‖] . (47)

Grouping (46) and (46) we get [
‖x+‖
‖ξ+‖

]
≤ A

[
‖x‖
‖ξ‖

]
+Bu‖u‖+Bb‖bc‖, (48)

where A =

[
σ̄

f
g σ̄ i

g‖Uc‖
σ̄o

g σ̄
f

g σ̄o
g σ̄ i

g‖Uc‖

]
as in (15), Bu =

[
σ̄ i

g‖Wc‖
σ̄o

g σ̄ i
g‖Wc‖

]
, and Bb =

[
σ̄ i

g
σ̄o

g σ̄ i
g

]
.



Now we show that the stability of matrix A, i.e. ρ(A)< 1, entails the ISS property of the LSTM. By iterating (48) we get[
‖x‖
‖ξ‖

]
≤ Ak

[
‖x0‖
‖ξ0‖

]
+

k−1

∑
i=0

Ak−i−1 (Bu‖u(i)‖+Bb‖bc‖) . (49)

Noting that ∥∥∥∥[‖x‖‖ξ‖
]∥∥∥∥= ∥∥∥∥[x

ξ

]∥∥∥∥= ‖χ‖,
taking the norm of (49) it follows that

‖χ‖ ≤ ‖Ak‖‖χ0‖+

∥∥∥∥∥k−1

∑
i=0

Ak−i−1 (Bu‖u‖+Bb‖bc‖)

∥∥∥∥∥ (50)

With standard norm arguments, since A is Schur stable, there exist constants µ ≥ 1 and λ ∈ (0,1) such that

‖χ(k)‖ ≤ µλ
k‖χ0‖+‖(I2−A)−1Bu‖max

h≥0
‖u(h)‖+‖(I2−A)−1Bb‖‖bc‖ (51)

i.e., that (4) is ISS according to Definition 4.
Proof: [Proof of Proposition 1] Applying Lemma 1 to (15), being a =−σ̄

f
g − σ̄o

g σ̄ i
g‖Uc‖ and b = 0, we conclude that

a necessary and sufficient condition for the Schur stability of A is that

−1+ σ̄
f

g + σ̄
o
g σ̄

i
g‖Uc‖< 0 < 1, (52)

from which (16) can be easily derived.
Proof: [Proof of Theorem 2] Let us compute the evolution of the upper bound of the norms of the two components of

the state χ , namely x and ξ . We proceed by addressing the two subvectors separately.

x+1 − x+2 =σg(Wf u1 +U f ξ1 +b f )◦ x1 +σg(Wiu1 +Uiξ1 +bi)◦σc(Wcu1 +Ucξ1 +bc)

− [σg(Wf u2 +U f ξ2 +b f )◦ x2 +σg(Wiu2 +Uiξ2 +bi)◦σc(Wcu2 +Ucξ2 +bc)]

=σg(Wf u1 +U f ξ1 +b f )◦ (x1− x2)+ x2 ◦ [σg(Wf u1 +U f ξ1 +b f )−σg(Wf u2 +U f ξ2 +b f )]

+σg(Wiu1 +Uiξ1 +bi)◦ [σc(Wcu1 +Ucξ1 +bc)−σc(Wcu2 +Ucξ2 +bc)]

+σc(Wcu2 +Ucξ2 +bc)◦ [σg(Wiu1 +Uiξ1 +bi)−σg(Wiu2 +Uiξ2 +bi)]

(53)

Recalling the upper bounds (9)-(12), Lipschitzianity of σc(·) and σg(·) and taking the norms both sides, we write, in view
of Properties 1 and 2, it follows that

‖x+1 − x+2 ‖ ≤ σ̄
f

g ‖x1− x2‖+
σ̄ i

gσ̄ c
c

1− σ̄
f

g

1
4

[
‖Wf ‖‖u1−u2‖+‖U f ‖‖ξ1−ξ2‖

]
+

+ σ̄
i
g

(
‖Wc‖‖u1−u2‖+‖Uc‖‖ξ1−ξ2‖

)
+ σ̄

c
c

1
4

(
‖Wi‖‖u1−u2‖+‖Ui‖‖ξ1−ξ2‖

)
≤ σ̄

f
g ‖x1− x2‖+α‖ξ1−ξ2‖+β‖u1−u2‖,

(54)

where α =

[
1
4‖U f ‖

σ̄ i
gσ̄ c

c

1−σ̄
f

g
+ σ̄ i

g‖Uc‖+ 1
4‖Ui‖σ̄ c

c

]
and β =

[
1
4‖Wf ‖

σ̄ i
gσ̄ c

c

1−σ̄
f

g
+ σ̄ i

g‖Wc‖+ 1
4‖Wi‖σ̄ c

c

]
.

Concerning the second state sub-vector,

ξ
+
1 −ξ

+
2 =σg(Wou1 +Uoξ1 +bo)◦σc(x+1 )−σg(Wou2 +Uoξ2 +bo)◦σc(x+2 )

=σg(Wou1 +Uoξ1 +bo)◦ (σc(x+1 )−σc(x+2 ))+σc(x+2 )◦
[

σg(Wou1 +Uoξ1 +bo)−σg(Wou2 +Uoξ2 +bo)

]
.

(55)

By recalling the bounds (9)-(12), (14) and (54), taking the norm both sides, we get

‖ξ+
1 −ξ

+
2 ‖ ≤ σ̄

o
g ‖x+1 − x+2 ‖+ σ̄

x
c

1
4

[
‖Wo‖‖u1−u2‖+‖Uo‖‖ξ1−ξ2‖

]
≤ σ̄

o
g

[
σ̄

f
g ‖x1− x2‖+α‖ξ1−ξ2‖+β‖u1−u2‖

]
+ σ̄

x
c

1
4

[
‖Wo‖‖u1−u2‖+‖Uo‖‖ξ1−ξ2‖

]
≤ σ̄

o
g σ̄

f
g ‖x1− x2‖+

[
ασ̄

o
g +

1
4

σ̄
x
c ‖Uo‖

]
‖ξ1−ξ2‖+

[
βσ̄

o
g +

1
4

σ̄
x
c ‖Wo‖

]
‖u1−u2‖

(56)

Grouping inequalities (54) and (56), we obtain that[
‖x+1 − x+2 ‖
‖ξ+

1 −ξ
+
2 ‖

]
≤ Aδ

[
‖x1− x2‖
‖ξ1−ξ2‖

]
+Bδ‖u1−u2‖ (57)



where Aδ is defined in (17) and Bδ =

[
β

βσ̄o
g +

1
4 σ̄ x

c ‖Wo‖

]
.

As shown in the proof of Theorem 1, it is hence possible to write

‖χ1(k)−χ2(k)‖ ≤ µδ λ
k
δ
‖χ01−χ02‖+‖(I2−Aδ )

−1Bδ‖max
h≥0
‖u1(h)−u2(h)‖,

i.e. (4) is δ ISS according to Definition 5.

Proof: [Proof of Proposition 2] In view of Lemma 1, being a =−σ̄
f

g −ασ̄o
g − 1

4 σ̄ x
c ‖Uo‖ and b = 1

4 σ̄
f

g σ̄ x
c ‖Uo‖, the matrix

Aδ is Schur stable – and ρ(Aδ )< 1 – if and only if inequalities (18) are fulfilled.
Proof: [Proof of Corollary 1] In the following, Corollary 1 is demonstrated by showing that the satisfaction of inequality

(18) implies the fulfillment of (16). In light of the definition of α , the left-hand inequality of (18) reads as

−1+ σ̄
f

g +

(
1
4
‖U f ‖

σ̄ i
gσ̄o

g

1− σ̄
f

g
+ σ̄

i
g‖Uc‖+

1
4
‖Ui‖σ̄ c

c

)
σ̄

o
g +

1
4

σ̄
x
c ‖Uo‖<

1
4

σ̄
f

g σ̄
x
c ‖Uo‖, (58)

which can be re-written as

−1+ σ̄
f

g + σ̄
o
g σ̄

i
g‖Uc‖<−

1
4
(1− σ̄

f
g )σ̄

x
c ‖Uo‖−

1
4

σ̄
o
g ‖U f ‖

σ̄ i
gσ̄o

g

1− σ̄
f

g
− 1

4
‖Ui‖σ̄ c

c σ̄
o
g . (59)

Recalling that σ̄
f

g ∈ (0,1), the right-hand side of the inequality is surely negative, i.e.

−1+ σ̄
f

g + σ̄
o
g σ̄

i
g‖Uc‖< 0. (60)

Condition (16) is hence fulfilled.
Proof: [Proof of Theorem 3] Let us define the error variables ex = x− x̂, eξ = ξ − ξ̂ and compute their evolution over

time. In particular:

e+x =x+− x̂+

=σg(Wf u+U f ξ +b f )◦ x+σg(Wiu+Uiξ +bi)◦σc(Wcu+Ucξ +bc)−{
σg
[
Wf u+U f ξ̂ +b f +L f (y− ŷ)

]
◦ x̂+σg[Wiu+Uiξ̂ +bi +Li(y− ŷ)]◦σc(Wcu+Ucξ̂ +bc)

}
=σg[Wf u+U f ξ +b f +L f (y− ŷ)]◦ (x− x̂)+ x◦

[
σg(Wf u+U f xi+b f )−σg[Wf u+U f ξ̂ +b f +L f (y− ŷ)]

]
+σg(Wiu+Uiξ +bi)◦

[
σc(Wcu+Ucξ +bc)−σc(Wcu+Ucξ̂ +bc)

]
+σc(Wcu+Ucξ̂ +bc)◦

[
σg(Wiu+Uiξ +bi)−σg[Wiu+Uiξ̂ +bi +Li(y− ŷ)]

]
.

(61)

Recalling (21)-(24), and noting that y− ŷ =C
(

ξ − ξ̂

)
, by taking the norm of both sides of (61) we get

‖e+x ‖ ≤ ˆ̄σ f
g ‖ex‖+

σ̄ i
gσ̄ c

c

1− σ̄
f

g

1
4
‖U f −L fC‖‖eξ‖+ σ̄

i
g‖Uc‖‖eξ‖+ σ̄

c
c

1
4
‖Ui−LiC‖‖eξ‖ ≤ ˆ̄σ f

g ‖ex‖+ α̂‖eξ‖. (62)

Similarly, the evolution of eξ can be computed as follows

e+
ξ
= ξ

+− ξ̂
+ =σg(Wou+Uoξ +bo)◦σc(x+)−σg[Wou+Uoξ̂ +bo +Lo(y− ŷ)]◦σc(x̂+)

=σg[Wou+Uoξ +bo +Lo(y− ŷ)]◦ (σc(x+)−σc(x̂+))

+σc(x+)◦
[
σg(Wou+Uoξ +bo)−σg[Wou+Uoξ̂ +bo +Lo(y− ŷ)]

] (63)

Then, recalling (21), taking the norm of both sides we obtain

‖e+
ξ
‖ ≤ ˆ̄σo

g ‖e+x ‖+
1
4
‖Uo−LoC‖‖eξ‖σ̄ x

c ≤ ˆ̄σo
g
(

ˆ̄σ f
g ‖ex‖+ α̂‖eξ‖

)
+ σ̄

x
c

1
4
‖Uo−LoC‖‖eξ‖

≤ ˆ̄σo
g ˆ̄σ f

g ‖ex‖+ ˆ(σ̄o
g α̂ +

1
4
‖Uo−LoC‖σ̄ x

c )‖eξ‖
(64)

Combining (62) and (64) we can write [
‖e+x ‖
‖e+

ξ
‖

]
≤ Â

[
‖ex‖
‖eξ‖

]
(65)

with Â being defined as in (20). Following the same steps as the Proof of Theorem 1, if ρ(Â)< 1 the norm of the prediction
error ‖χ− χ̂‖ exponentially converges to zero.



Proof: [Proof of Proposition 3] The Schur stability of the matrix Â defined in (20) can be assessed applying Lemma 1,
leading to the condition (25b). Such condition is applied as a constraint in the optimization problem (25), so as to ensure
that Theorem 3 holds.

Proof: [Proof of Theorem 4] Assume that, at time step k, the optimal solution U(k|k) to the MPC problem is obtained,
and that according to the Receding Horizon principle the first optimal input value u(k) = u(k|k) is applied to the system. We
denote with χ(k+ i|k), with i ∈ {0, . . . ,N}, the state trajectory obtained iterating (4) with initial condition χ(k|k) = χ̂(k),

and using U(k|k) as input sequence. Similarly, we denote ∆(k+N|k) =
[
‖x(k+N|k)− x̄‖
‖ξ (k+N|k)− ξ̄‖

]
.

We will consider the optimal value of J (denoted J∗(k)) as a candidate Lyapunov function to analyze the stability properties
of the MPC control algorithm:

J∗(k) =
N−1

∑
i=0

(
‖χ(k+ i|k)−χ̄‖2

Q+‖u(k+ i|k)−ū‖2
R

)
+‖∆(k+N|k)‖2

P.

First, it should be noted that
J∗(k)≥ γ1 ‖χ̂(k)− χ̄‖2 , (66)

where γ1 = λmin(Q). Secondly, note that u(k+ i) = ū is a possibly suboptimal yet feasible control input for all i∈ {0, . . . ,N−
1}. We denote with χo(k+ i|k) = [xo(k+ i|k)T ξ o(k+ i|k)T ]T , with i ∈ {0, . . . ,N}, the state trajectory obtained iterating (4)
with initial condition χ(k|k) = χ̂(k), and using {u(k) = ū, . . . ,u(k+N−1) = ū} as input sequence. We thus obtain that

J∗(k)≤
N−1

∑
i=0
‖χo(k+ i|k)− χ̄‖2

Q +‖∆o(k+N|k)‖2
P,

where ∆o(k+N|k) = [‖xo(k+N|k)− x̄‖, ‖ξ o(k+N|k)− ξ̄‖]T . First note that ‖∆o(k+N|k)‖2
P ≤ λmax(P)‖∆o(k+N|k)‖2 =

λmax(P)‖χo(k+N|k)− χ̄‖2. As in the proof of Theorem 2, since ρ(Aδ ) < 1 there exist µ ≥ 0 and λ ∈ (0,1) such that,
∀i≥ 0,

‖χo(k+ i|k)− χ̄‖ ≤ µλ
i‖χ̂(k)− χ̄‖.

This implies that there exists a constant γ2 ≥ 0 such that

J∗(k)≤ γ2‖χ̂(k)− χ̄‖2.

At time k+1 (with some abuse of notation, but for the sake of simplicity), we denote with χ(k+ i|k+1), with i∈ {1, . . . ,N+
1}, the possibly suboptimal state trajectory obtained iterating (4) with initial condition χ(k+1|k+1) = χ̂(k+1), and using
{u(k+1|k), . . . ,u(k+N−1|k), ū} as input sequence. Note that χ(k+1|k+1) = χ̂(k+1) 6= ϕ(χ̂(k|k),u(k|k)) = χ(k+1|k).
For all i ∈ {1, ...,N−1}, we introduce the following quantities

ε(k+1|k+1) = χ̂(k+1)−χ(k+1|k),
ε∆(k+1|k+1) = ∆(k+1|k+1)−∆(k+1|k),

ε(k+ i+1|k+1) = χ(k+ i+1|k+1)−χ(k+ i+1|k),
ε∆(k+ i+1|k+1) = ∆(k+ i+1|k+1)−∆(k+ i+1|k).

(67)

Then, the optimal value J∗(k+1) satisfies

J∗(k+1)≤
N−1

∑
i=0

(
‖χ(k+1+ i|k+1)−χ̄‖2

Q+‖u(k+1+ i|k)−ū‖2
R

)
+‖∆(k+N +1|k+1)‖2

P

≤
N−1

∑
i=0

(
‖χ(k+1+ i|k)−χ̄+ε(k+ i+1|k+1)‖2

Q+‖u(k+1+ i|k)−ū‖2
R

)
+‖∆(k+N +1|k)+ε∆(k+N +1|k+1)‖2

P

Therefore
J∗(k+1)− J∗(k)≤−‖χ(k|k)− χ̄‖2

Q−‖u(k|k)− ū‖2
R

+
N−1

∑
i=1

(
‖χ(k+ i|k)− χ̄ + ε(k+ i|k+1)‖2

Q−‖χ(k+ i|k)− χ̄‖2
Q

)
+‖χ(k+N|k)− χ̄ + ε(k+N|k+1)‖2

Q +‖u(k+N|k+1)− ū‖2
R

+‖∆(k+N +1|k)+ ε∆(k+N +1|k+1)‖2
P−‖∆(k+N|k)‖2

P

(68)



We now consider the different additive terms at the right hand side of inequality (68). First, we write
N−1

∑
i=1

(
‖(χ(k+ i|k)− χ̄)+ ε(k+ i|k+1)‖2

Q−‖χ(k+ i|k)− χ̄‖2
Q

)
=

N−1

∑
i=1

(
‖χ(k+ i|k)− χ̄‖2

Q−‖χ(k+ i|k)− χ̄‖2
Q +‖ε(k+ i|k+1)‖2

Q +2(χ(k+ i|k)− χ̄)T Qε(k+ i|k+1)
)

=
N−1

∑
i=1

(
‖ε(k+ i|k+1)‖2

Q +2(χ(k+ i|k)− χ̄)T Qε(k+ i|k+1)
)
.

Also, in view of Property 3, it holds that

−‖∆(k+N|k)‖2
P +‖χ(k+N|k)− χ̄ + ε(k+N|k+1)‖2

Q +‖∆(k+N +1|k)+ ε(k+N +1|k+1)‖2
P

≤−‖∆(k+N|k)‖2
P +(1+ρ

2)‖χ(k+N|k)− χ̄‖2
Q+

+

(
1+

1
ρ2

)
‖ε(k+N|k+1)‖2

Q +(1+ρ
2)‖∆(k+N +1|k)‖2

P +

(
1+

1
ρ2

)
‖ε∆(k+N +1|k+1)‖2

P

=−‖∆(k+N|k)‖2
P +
(
1+ρ

2)(‖χ(k+N|k)− χ̄‖2
Q +‖∆(k+N +1|k)‖2

P
)
+

+

(
1+

1
ρ2

)
(‖ε(k+N|k+1)‖2

Q +‖ε∆(k+N +1|k+1)‖2
P).

Noting that

‖∆‖=
∥∥∥∥[ ‖x− x̄‖
‖ξ − ξ̄‖

]∥∥∥∥= ∥∥∥∥[ x− x̄
ξ − ξ̄

]∥∥∥∥= ‖χ− χ̄‖, (69)

and in view of the δ ISS property of the system:

∆(k+N +1|k)≤ Aδ ∆(k+N|k). (70)

Thus it follows that

−‖∆(k+N|k)‖2
P +(1+ρ

2)
(
‖χ(k+N|k)− χ̄‖2

Q +‖∆(k+N +1|k)‖2
P
)

≤−‖∆(k+N|k)‖2
P +(1+ρ

2)q
(
‖χ(k+N|k)− χ̄‖2 +‖Aδ ∆(k+N|k)‖2

P
)

≤ ‖∆(k+N|k)‖2
AT

δ
PAδ−P+qI2(1+ρ2)

.

By construction AT
δ

PAδ −P ≺ −qI2, see (29), therefore we can always select a value of ρ > 0 small enough to obtain
AT

δ
PAδ −P+qI2(1+ρ2)≺ 0. Overall, we obtain that

J∗(k+1)− J∗(k)≤−‖χ̂(k)− χ̄‖2
Q−‖u(k)− ū‖2

R + (a), (71)

where

(a) =
N−1

∑
i=1

(
‖ε(k+ i|k+1)‖2

Q +2(χ(k+ i|k)− χ̄)T Qε(k+ i|k+1)
)

+

(
1+

1
ρ2

)(
‖ε(k+N|k+1)‖2

Q +‖ε∆(k+N +1|k+1)‖2
P
)

Note that
‖ε∆(k+N +1|k+1)‖2

P ≤λmax(P)((‖x(k+N +1|k+1)− x̄‖−‖x(k+N +1|k)− x̄‖)2+

+(‖ξ (k+N +1|k+1)− ξ̄‖−‖ξ (k+N +1|k)− ξ̄‖)2)

≤λmax(P)(‖x(k+N +1|k+1)− x(k+N +1|k)‖2+

+‖ξ (k+N +1|k+1)−ξ (k+N +1|k)‖2)

(72)

The latter inequality is justified by the fact that, given two vectors a and b, |‖a‖ − ‖b‖| ≤ ‖a− b‖. In view of this,
‖ε∆(k+N +1|k+1)‖2

P ≤ λmax(P)‖χ(k+N +1|k+1)−χ(k+N +1|k)‖2 = λmax(P)‖ε(k+N +1|k+1)‖2.
Overall we can, for simplicity, define an upper bound to (a) as follows

(a)≤α1

N+1

∑
i=1
‖ε(k+ i|k+1)‖2 +α2

N−1

∑
i=1
‖ε(k+ i|k+1)‖

where α1 and α2 are suitable positive scalars. In the following we analyze more in details the terms ε(k + i|k + 1).

First, recalling (9)-(14) and (21)-(24), let us note that the invariant set of x̂( j) is X̂ =

{
x ∈ R : |x| ≤

ˆ̄σ i
g ˆ̄σo

g

1− ˆ̄σ f
g

}
, and thus



ˆ̄σ x
c = σc

(
ˆ̄σ i
g ˆ̄σo

g

1− ˆ̄σ f
g

)
. The two sub-vectors of ε(k + 1|k + 1) = [(x̂(k + 1)− x(k + 1|k))T ,(ξ̂ (k + 1)− ξ (k + 1|k))T ]T are now

computed as:

x̂(k+1)− x(k+1|k) =σg[Wf u+U f ξ̂ +b f +L fC(ξ − ξ̂ )]◦ x̂+σg[Wiu+Uiξ̂ +bi +LiC(ξ − ξ̂ )]◦σc[Wcu+Ucξ̂ +bc]

−σg[Wf u+U f ξ̂ +b f ]◦ x̂+σg[Wiu+Uiξ̂ +bi]◦σc[Wcu+Ucξ̂ +bc]
(73)

ξ̂ (k+1)−ξ (k+1|k) =σg[Wou+Uoξ̂ +bo +LoC(ξ − ξ̂ )]◦σc(x̂+)−σg[Wou+Uoξ̂ +bo]◦σc(x(k+1|k))
=
[
σg[Wou+Uoξ̂ +bo +LoC(ξ − ξ̂ )]−σg[Wou+Uoξ̂ +bo +LoC(ξ − ξ̂ )]

]
◦σc(x̂+)+

+σg[Wou+Uoξ̂ +bo +LoC(ξ − ξ̂ )]
(
σc(x̂+)−σc(x(k+1|k))

) (74)

Thus, taking the norm of both sides of (73) and (74), and exploiting the aforementioned bounds, it can be shown that

‖ε(k+1|k+1)‖ ≤ α3‖χ(k)− χ̂(k)‖, (75a)

where

α3 =

∥∥∥∥∥∥∥
0 1

4
ˆ̄σ i
g ˆ̄σ c

c

1− ˆ̄σ f
g
‖L fC‖+ 1

4 σ̄ c
c ‖LiC‖

0 σ̄o
g

(
1
4

ˆ̄σ i
g ˆ̄σc

c

1− ˆ̄σ f
g
‖L fC‖+ 1

4 σ̄ c
c ‖LiC‖

)
+ 1

4
ˆ̄σ x

c ‖LoC‖


∥∥∥∥∥∥∥ . (75b)

Letting e(k) = χ(k)− χ̂(k), in view of the error convergence rate ensured by the observer, see Theorem 3, we can guarantee
that

‖ε(k+1|k+1)‖ ≤ α3µλ
k‖e(0)‖. (76)

Thus, in view of δ ISS of the system (see Theorem 2) we can further state that

‖ε(k+ i+1|k+1)‖ ≤ µλ
i‖ε(k+1|k+1)‖ (77)

This implies that
‖ε(k+ i|k+1)‖ ≤ α3µ2λ k+i−1‖e(0)‖ (78)

By combining inequalities (71) and (78) we eventually obtain that there exists a K L function β̃ and a constant γ3 = γ1 > 0
such that J̃∗(k+ 1)− J̃∗(k) ≤ −γ3 ‖χ̂(k)− χ̄‖2 + β̃ (‖e(0)‖,k), where β̃ (‖e(0)‖,k) is exponentially decreasing with respect
to its second argument k. Along the same lines of reasoning of Theorem 3 in [43], we can prove asymptotic stability of the
equilibrium point denoted by the triplet (ū, χ̄, ȳ).
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