Today, many complex multiobjective problems are dealt with using genetic algorithms (GAs). They apply the evolution mechanism of a natural population to a “numerical” population of solutions to optimize a fitness function. GA implementations must find a compromise between the breath of the search (to avoid being trapped into local minima) and its depth (to prevent a rough approximation of the optimal solution). Most algorithms use “elitism”, which allows preserving some of the current best solutions in the successive generations. If the initial population is randomly selected, as in many GA packages, the elite may concentrate in a limited part of the Pareto frontier preventing its complete spanning. A full view of the frontier is possible if one, first, solves the single-objective problems that correspond to the extremes of the Pareto boundary, and then uses such solutions as elite members of the initial population. The paper compares this approach with more conventional initializations by using some classical tests with a variable number of objectives and known analytical solutions. Then we show the results of the proposed algorithm in the optimization of a real-world system, contrasting its performances with those of standard packages.

Improving the Performance of Multiobjective Genetic Algorithms: An Elitism-Based Approach

Guariso, Giorgio;Sangiorgio, Matteo
2020-01-01

Abstract

Today, many complex multiobjective problems are dealt with using genetic algorithms (GAs). They apply the evolution mechanism of a natural population to a “numerical” population of solutions to optimize a fitness function. GA implementations must find a compromise between the breath of the search (to avoid being trapped into local minima) and its depth (to prevent a rough approximation of the optimal solution). Most algorithms use “elitism”, which allows preserving some of the current best solutions in the successive generations. If the initial population is randomly selected, as in many GA packages, the elite may concentrate in a limited part of the Pareto frontier preventing its complete spanning. A full view of the frontier is possible if one, first, solves the single-objective problems that correspond to the extremes of the Pareto boundary, and then uses such solutions as elite members of the initial population. The paper compares this approach with more conventional initializations by using some classical tests with a variable number of objectives and known analytical solutions. Then we show the results of the proposed algorithm in the optimization of a real-world system, contrasting its performances with those of standard packages.
2020
hypervolume; utopic solution; elitism; multiobjective planning
File in questo prodotto:
File Dimensione Formato  
information-11-00587-v2.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1167848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact