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Abstract: Today, many complex multiobjective problems are dealt with using genetic algorithms
(GAs). They apply the evolution mechanism of a natural population to a “numerical” population
of solutions to optimize a fitness function. GA implementations must find a compromise between
the breath of the search (to avoid being trapped into local minima) and its depth (to prevent a rough
approximation of the optimal solution). Most algorithms use “elitism”, which allows preserving
some of the current best solutions in the successive generations. If the initial population is randomly
selected, as in many GA packages, the elite may concentrate in a limited part of the Pareto frontier
preventing its complete spanning. A full view of the frontier is possible if one, first, solves the
single-objective problems that correspond to the extremes of the Pareto boundary, and then uses such
solutions as elite members of the initial population. The paper compares this approach with more
conventional initializations by using some classical tests with a variable number of objectives and
known analytical solutions. Then we show the results of the proposed algorithm in the optimization
of a real-world system, contrasting its performances with those of standard packages.
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1. Introduction

Multiobjective (MO) optimization is one of the most common tools developed in recent decades
to support decision-making. It has been largely used to tackle problems in the domains of industrial
design [1–3], financial risk management [4–7], water resources systems [8–11], energy decisions [12–14]
and environmental policy making [15–18]. Its well-known advantage is not to force the evaluation
of all the criteria into one common unit of measurement (usually, money) as required by cost-benefit
analysis. On the other hand, its disadvantage is that it produces a set of nondominated solutions
(Pareto frontier) that may be rather large when the number of criteria is more than two or three.
This means that a more in-depth analysis is usually needed to reach a final compromise solution.
On the other hand, the identification of the full Pareto frontier means that the space of relevant
values of the objectives is completely revealed. This also clarifies what can be achieved in terms of an
objective, when another is optimized, i.e., it shows what performance of each objective can be granted,
whatever choice is taken within the nondominated (efficient) set of decisions. A further well-known
property of the Pareto frontier is that it allows determining the trade-offs of each individual choice,
namely the decrease of performance of the other objectives when one is improved along the frontier.
These important positive characteristics are usually counterbalanced by the high computational burden
that is needed for the determination of the solutions of a multiobjective problem. Such problems
are often highly nonlinear and with many decision variables, which means they cannot be solved
by simplex method, on the one side, nor by analytical optimization algorithms such as dynamic
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programming, on the other. Modern solution tools for these problems are thus based on evolutionary
heuristics often mimicking some natural process [19–21]. Algorithms of this type comprise simulated
annealing [22], ant colony optimization [23], and cuckoo search [24], but the most common is by far
the class of genetic algorithms (GAs) [25]. They are a group of tools that make a solution evolve
to a better one, following a process inspired by the natural evolution of living species. As natural
evolution selects the fittest individuals to survive in a given environment, these algorithms try to
evolve a set of initial solutions (initial population) towards the best ones, implementing the rules that
govern natural selection. Coupled with a multiobjective setting, GAs have been used in many different
applications and several tools are available for their implementation [26–28]. One of the most famous
and widely used is NSGA-II [29], which is used in this paper to present an innovative search setting.
Multiobjective GAs have in fact to solve a multiobjective problem themselves in that they need to
trade-off the breath of the search (that requires changes in the current search direction) with the depth
of the search (that requires to keep digging in the current direction). This dilemma is solved in slightly
different ways in the currently available packages, mainly exploiting various formulations of the
mutation mechanism [30–34], but they can hardly guarantee a complete spanning of the Pareto frontier.
This paper addressees exactly this point and shows how a full definition of the frontier boundary can
be obtained.

Before doing this, we revise the main features of GAs in the next Section 2, also introducing
the way in which their performance can be measured. In Section 3, we present the basic idea of
exploiting the elitism mechanism for the complete exploration of the frontier and the advantages of the
approach to support decision-making. Section 4 presents the results of adopting the proposed method
to a set of sample problems, the exact solution of which can be determined analytically. Section 5
shows the application to a real-world case and, finally, Section 6 provides a discussion and draws
some conclusions.

2. Genetic Algorithms’ Operators and Performances Evaluation

GAs try to replicate the natural selection process of a living population, defining how a series of
processes take place (Figure 1). Given a population (of solutions) at a specific iteration step (which can
be the initial one), a certain number of individuals is first selected. Some couples of these individuals are
joined, forming new solutions with parts (genes) of the generating couple (crossover). The components
of other individuals are randomly modified (mutation), and a new generation is defined. The purpose
of all these actions is to determine the individuals that best perform in terms of the objective function,
thus mimicking the Darwin principle of the “survival of the fittest”. The performance of any algorithm
is therefore linked to the parameters and specific mechanisms with which each process (selection,
crossover, mutation) is implemented. These mechanisms have to be set so that they ensure a proper
balancing between diversity (exploration) and convergence (exploitation) [35–38].

To guarantee that the algorithm evolves toward the improvement of the objective function,
the current best solutions are always moved to the following generation. This additional mechanism,
called “elitism”, contributes significantly to the performance of the algorithm. It is, in fact,
responsible for the depth of the search, whereas the other mechanisms determine its breath since
they tend to enlarge the search space exploring at larger distances from the current best alternatives.
The implementation of any GAs thus requires a careful selection of all these parameters and the
standard approach is to test different combinations of their values. Further required assumptions are
the dimension and composition of the initial population and the number of generations to compute.
The last is the only parameter of the search algorithm that can be safely assessed by looking at the
evolution of the objective function through the generations and stopping the algorithm when no gain
is achieved for a certain number of iterations. Finally, since most of the above mechanisms are driven
by random factors, it is customary to repeat the full procedure a number of times for each fixed set of
parameter values.
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Figure 1. Schematic representation of the bioinspired processes (selection, crossover, mutation,
and elitism) that occur during one step of a genetic optimization.

Measuring the performance of an algorithm in a multiobjective setting is not a trivial task.
The problem solution is in fact constituted by the set of nondominated alternatives (i.e., those that
cannot be improved under all the objectives at the same time) and thus one must determine how far
the entire frontier moves. A way to measure this is to fix an arbitrary feasible solution in the objective
space and determine the hypervolume explored by the algorithm [39]. The ratio between this portion
of space and that delimited by a reference frontier is called “relative hypervolume” [40] as exemplified
in Figure 2.

This reference frontier can be the exact one, when it is analytically known. In real-world
cases, the actual Pareto frontier is unknown and this introduces a further bias in the definition
of the hypervolume. One possible option is to assume, as a boundary, the set of all nondominated
solutions determined by different algorithms, something that is clearly unreachable by each individual
algorithm [41].

The numerical value of the hypervolume depends on the selected reference solutions (the frontier
and the upper right corner in Figure 2). This means that the hypervolume is a suitable measure for the
difference between two algorithms but its absolute value may not be very meaningful. In addition,
selecting a too large reference volume may cause the differences between two algorithms to appear
as irrelevant.

f1

f 2

relative
hypervolume

 =  0.97

Figure 2. Example of relative hypervolume. Blue dots represent the optimal solutions computed
numerically, the red dashed line the target front analytically known.

Finally, it is essential to remember that algorithms always work with discrete values and thus a
complete spanning of a real continuous boundary is unfeasible unless an infinite number of iterations
is possible. Therefore, even for a very efficient algorithm, the relative hypervolume is always below
one, and the actual solution, when analyzed in detail, is always step-wise as exemplified in Figure 2
for the two-objective case.
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3. Defining the Full Search Space

Most GAs propose and implement by default an initial random population. This choice is justified
by the random nature of the evolution process and is particularly important when the domain of
feasible values of the decisions is unknown. This is the case, for instance, when the decisions are
the parameters of a model or a control rule, for which only non-negativity can be assumed. As said,
this random initialization is repeated several times and a new elite fraction is determined at each initial
step to guide the further search.

Considering an n-objective problem, we propose on the contrary to fix the initial elite fraction,
in any repetition, by:

• First, solve separately n single-objective (SO) problems;
• Include the n optimal solutions (individuals) in the initial population of the MO problem;
• These solutions cannot be dominated and thus always remain in the elite set;
• Span the Pareto frontier with these solutions always in the population.

The n individual optimal solutions determine the so-called Utopia point (U), which defines the
absolute best performance each objective can achieve. At the same time, it shows the guaranteed
results of the other objectives, i.e., the values they can achieve even if only one objective is considered.
These granted values determine a solution in the objective domain known as Anti-Utopia (AU).
See again a two-objective example in Figure 3.

f1

f2

f1

f2

U

AU

U

AU

current
situation

P

P

(a) (b)

Figure 3. Compromise solution (P) selected minimizing the distance to the Utopia point (U)
(a) or considering the same percentage improvement from the current situation to the Utopia (b).
AU indicates the so-called Anti-Utopia point.

The Utopia and Anti-Utopia solutions are essential information for the negotiation among the
stakeholders in all real-world problems. Indeed, they delimit the feasible and interesting space and
show what are the maximum and minimum values of each objective that is reasonable to consider.
There is no sense in discussing and trading outside these limits. Practical experience shows that, in some
cases, the simple definition of this space is an important step to frame the discussion correctly and
avoid fruitless litigation. Additionally, the definition of AU provides a clear reference for hypervolume
calculations, and U constitutes an enlightening benchmark to suggest a specific nondominated solution
in the Pareto frontier. Given that, in the end, a unique compromise solution (P) must be selected,
decision-makers can be supported by determining the solution at minimum distance, suitably defined,
from U (see Figure 3a). Or, when trying to define an improvement with respect to a current compromise
solution (feasible by definition), one can select the intersection of the (hyper)segment connecting the
current solution to U. In this way, each objective (possibly representing a specific stakeholder) can
achieve the same proportion of the maximum achievable improvement (Figure 3b).
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4. Analytical Tests

The proposed single-objective plus multiobjective (SO+MO) approach can be implemented on all
GAs that allow for an external definition of the initial population, once the single-objective problems
are separately solved. To show its effects in practice, we have used the Matlab implementation of the
well-known and widely used NSGA-II algorithm [29] (function gamultiobj()), whose performance is
traditionally considered as a benchmark. The standard GA algorithm in Matlab (function ga()) was also
used for the single-objective step [42]. To fairly compare the two methods, we use the same number of
function evaluations N, which defines the computational effort required to complete the optimization.

Figure 4 shows how the N function evaluations are assigned to the different steps of the traditional
MO and of the proposed SO+MO methods. In the first, we directly solve the MO problem, and thus all
the computation is reserved for that step. In the second, NSO evaluations are reserved for the n SO
problems, while the remaining NMO = N − NSO evaluations for the final MO problem. How much
to allocate to each task is a new parameter of the algorithm. In the following, NSO has been assumed
equal to N/2, but this choice has proved to be not particularly critical in the experiments that follow.

Figure 4. Allocation of the N function evaluations to the different steps of a traditional MO algorithm (a)
and of the proposed SO+MO procedure (b).

In GAs, the number of function evaluations is defined as the product between the population size
and the number of generations. The trade-off between a large population and many generations
has been discussed in the GAs’ literature [43]. Large populations require more memory but,
at the same time, allow speeding up the optimization, when the task is parallelized. In general,
different combinations with the same number of function evaluations lead to similar results,
provided that extreme situations are avoided. For instance, a single generation optimization (with a
population size equal to the number of function evaluations) corresponds to a purely random search.
Conversely, a population of few individuals is extremely inefficient even if the optimization lasts for
many generations since it prevents the proper functioning of the evolutionary mechanisms. In this
work, we consider a population size equal to the number of generations (equal to the square root of
the number of function evaluations).

The performance of a GA is highly dependent on the initial population and the value assigned to
the algorithm parameters, such as the probability of crossover and mutation, and the elite fraction, i.e.,
the individuals that are guaranteed to survive to the next generation. Finding the best combination of
parameters for a heuristic is not easy and, given the strong random component, even if it would be
possible, it is not guaranteed that the setting obtained considering a scenario will work equally well
for a different set of input data. To take into account these issues, we defined a reasonable range for
each parameter (i.e., crossover, mutation and elite fraction) and tested all the possible combinations.
To avoid dependence on unlucky initial populations, 10 restarts with different random extractions
have been performed for each parametrization.

We considered the two test problems introduced by Deb et al. [44] and traditionally
used to evaluate the effectiveness of optimization algorithms [45]. These problems are scalable
(i.e., arbitrary numbers of decision variables xi and objectives fm, m = 1,2,...,M, can be chosen), and
the solutions are analytically known.
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The following set of equations defines the test problem DTLZ #1:

min f1 = (1 + g) 0.5
M−1

∏
i=1

xi

min fm=2:M−1 = (1 + g) 0.5

(
M−m

∏
i=1

xi

)
(1 − xM−m+1)

min fM = (1 + g) 0.5 (1 − x1)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , M + k − 1

g = 100

[
k +

M+k−1

∑
i=M

(
(xi − 0.5)2 − cos

(
20π(xi − 0.5)

))]
(1)

In the objective space, the Pareto-optimal solutions of this problem lie on the hyperplane:

M

∑
m=1

fm = 0.5 (2)

The following set of equations defines the test problem DTLZ #2:

min f1 = (1 + g)
M−1

∏
i=1

cos (xi π/2)

min fm=2:M−1 = (1 + g)

(
M−m

∏
i=1

cos (xi π/2)

)
sin (xM−m+1 π/2)

min fM = (1 + g) sin (x1 π/2)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , M + k − 1

g =
M+k−1

∑
i=M

(xi − 0.5)2

(3)

The Pareto-optimal solutions of the problem defined by the set of Equation (3) lie on the following
spherical surface in the objective space:

M

∑
m=1

( fm)
2 = 1 (4)

The above problems have a number of decision variables equal to M + k − 1. As suggested in the
original paper [44], the parameter k has been fixed to 5 for # DTLZ1 and 10 for # DTLZ2.

The 2D and 3D objective spaces for DTLZ #1 and #2 are represented in Figure 5.
As expected, the results obtained for problem DTLZ #1 strongly depend on the initial population.

In some cases, the traditional MO with random initialization and the SO+MO approach provide
an excellent approximation of the analytically known Pareto set with relative hypervolumes of the
order of 0.95–0.96. Conversely, in other cases, the algorithms perform worse in two different ways.
The randomly initialized MO algorithm is unable to fully explore the objective space and produces only
a limited portion of the frontier (see Figure 6a) with relative hypervolume values of the order of 0.75.
On the other side, the SO+MO approach is sometimes unable to provide an accurate determination of
the entire Pareto set because the number of evaluation available for the MO step is reduced (Figure 6b).
Nevertheless, the full breadth of the Pareto frontier is determined and, consequently, the relative
hypervolume values continue to exceed 0.9. These results were obtained with thousands of evaluations
(N = 1000), half dedicated to the determination of the two separate optima of the two objectives and
half to the MO step in the case of the proposed approach, all utilized for the MO evaluation in the
other case.
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Figure 5. Optimal Pareto front for the DTLZ #1 (a,b) and DTLZ #2 (c,d) problems considering 2 and
3 objectives.
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Figure 6. Analytical Pareto front (red dashed line) and solutions (blue dots) computed for DTLZ # 1.
Panel (a) reports the performance of the MO algorithm, panel (b) of the SO+MO procedure.

Initializing the elite set with the individual n SO solutions becomes more important when the
number of objectives grows. Figure 7 illustrates the average relative hypervolume values (black line)
for different numbers of objectives with the traditional initialization on the left (Figure 7a) and with
the SO+MO approach on the right (Figure 7b). The grey band shows the variability of the values
across all the repetitions. The function evaluations were 103 for two objectives, 104 for three objectives,
and 105 for four, always split half and half between the SO and the MO steps. It is evident that the
proposed approach provides better average results and also guarantees a reduced variability of the
approximation to the Pareto set. Note that the relative hypervolume values are all lower than in the
preceding 2D case and are decreasing with the number of objectives. This is because, working in
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higher dimensions, the step-wise form of the numerical solution is more distant from the continuous
analytical frontier. Nonetheless, it is evident that some random initialization may completely fail
to approximate the correct solution, with relative hypervolume values that can go down to 0.1–0.2
already with three or four objectives. It is evident that the exact Pareto frontier is neither known nor
continuous in real cases and thus the ability of an algorithm of guaranteeing certain performances is
extremely important.
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Figure 7. Average relative hypervolume (black line) and corresponding variability bound (grey area)
obtained solving the DTLZ #2 problem for an increasing number of objectives. Panel (a) reports the
performance of the MO algorithm, panel (b) of the SO+MO procedure.

It is important to note that the way used to subdivide the computation adopted here (see, Figure 4)
does not consider that the different SO problems generally have different complexity. Most of the
times, a static splitting criterion can turn out to be suboptimal since it assigns the same number of
function evaluations to easy (or lucky) as well as to complex (or unlucky) SO problems.

Considering as an example a 3-objective DTLZ #2 problem, the results of the SO optimization of
f1 and f2 are sufficiently accurate after just a few generations (Figure 8a,b).

Conversely, f3 is more critical, and its convergence slower (Figure 8c). However, in this case,
our even splitting of the number of function evaluations reserved over 1600 evaluations for each SO
problem, i.e., 40 generations, whereas only less than ten would have been sufficient. Note, additionally,
that a very precise determination of the SO optima may not be necessary. The purpose of this step is
to guide the following optimization, which will deep the search around the elite solutions anyway,
so even a relatively rough estimation of the SO optima may still serve the purpose.

A possible strategy to further improve the algorithm efficiency consists of introducing a stopping
criterion that saves unnecessary computation. A common choice, used by default in the Matlab
optimization toolbox, is to stop the algorithm when the average value of the objective function, f ,
does not improve (considering a tolerance) for a given number of generations. This means that the
user must define two additional parameters: the accepted tolerance and the number of generations
that should satisfy the constraint before the algorithm stops.
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Figure 8. Convergence of the SO optimization of a 3-dimensional DTLZ #2 problem. Panel (a) reports
the average value of f1 across the generations for the individuals composing the population. Panels (b,c)
show the evolution of the average performance for f2 and f3, respectively.

5. Real-World Results

To further test the effectiveness of solving the preliminary SO problems before the final MO
optimization, we considered a real-world water resources management case. The problem refers to
the operation of the reservoirs in the Lower Nile River basin and has been extensively described in
previous works [9,10].

A schematic representation of the system is provided in Figure 9.
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Figure 9. Schematic representation of the Lower Nile River system. Figure modified from [46].
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There are three artificial reservoirs and a natural lake at Lake Tana in Ethiopia. Two of the
reservoirs represent the joint operations of two dams in cascade, Roseries and Sennar, in Sudan,
and Merowe and Lake Nasser’s Aswan High Dam, between Sudan and Egypt. The other is Khashm
el Girba reservoir on the Atbara River. These reservoirs’ combined storage capacity exceeds twice
the average flow of 81.2 Gm3 as measured in Khartoum, Sudan. Downstream each water body,
including Lake Tana, there is a hydropower station, for a total installed capacity of about 6 GW,
one third of which at the outflow of Lake Nasser. Further downstream, there are agricultural districts
that use the water for irrigation. These are largely dominated by the Egyptian agricultural demand
that historically accounted for about two third of the Main Nile flow. Several of tributaries add water
to the main flow at various junctions. The most important is the White Nile that joins the main river in
Khartoum. It originates from the Central African catchment but reaches the junction with a relatively
constant and low flow. Overall, the Nile flow shows a large interannual variability from about 90 to
140 Gm3 in dry and wet years, as well as a typical monthly pattern with minimum flow in spring at
about 100 Mm3 per day and peaks in late summer-autumn at almost eight times as much. We assume
that cooperation between states is possible (a very idealistic situation at the current time). So there are
only two global objectives: average annual hydropower production and average yearly agricultural
deficit. The first, fhyd, is defined as the annual average of all the power plants’ energy production.
The energy generated in each plant is proportional to the product between the flow release through
the turbines and the hydraulic head. The second objective, firr, is the annual average of the total
water deficit, defined as the sum over all the agricultural districts of the positive differences between
the monthly varying water demand and the water available in the same node at each monthly step.
The two values fhyd and firr are rescaled for convenience into the range [0, 1]. Zero represents the best
value of the objectives (full hydropower production and no agricultural deficit) and one the worst
(zero hydropower and deficit equal to the demand). Both rescaled objectives must be minimized.

Each reservoir is characterized by its continuity equation:

s(t + 1) = s(t)− r(t) + i(t)− l(s(t)), (5)

where s(t) represents the storage at month t, r(t) is the release, i(t) the inflow, and l(s(t)) the water
losses, mainly due to evaporation, which is a nonlinear and time-varying function of the water
storage. For instance, Lake Nasser’s surface may oscillate between about 1500 and 6500 km2 with
monthly evaporation losses varying from 120 mm in January and about 300 in June, July, August,
totaling an average annual loss of around 11–12 Gm3, i.e., about 16% of the inflow to the lake.
Additionally, each storage has a maximum and minimum value that force the release when these
limits are hit. Once the releases are fixed, the water is run through the turbines (which again have a
maximum capacity) for energy production and routed through the different branches of the system.
Several additional inflows are received along this route, and water is abstracted for irrigation of the
agricultural districts. These are supposed to derive an amount of water equal to their monthly varying
requirements if the flow at their abstraction point is sufficient, otherwise they take less, and this causes
the deficit. The simulation model implementing all these water balances at each point of the river
system with a monthly time step has been built starting from [47,48]. Assuming the monthly release
from each reservoir when all the water inflows are known as decision variables, their number depends
on the number of years constituting the planning horizon. For instance, assuming a five-year scenario
and monthly releases from three reservoirs, the number of decision variables is 180. The constraints
necessary for problem definition in such a scenario are more than two hundred, and the nonlinearities
are due to the equation of energy production, to the calculation of water evaporation, plus a number of
thresholds (such as turbine capacity) that make the overall problem difficult to solve with algorithms
different from GAs. After some testing, we selected the following parameters for NSGA-II. The initial
population dimension was set to 2400, the number of restarts to 10, the elite fraction to 0.05 for
SO, and to 0.35 for MO problems (the parameter ParetoFraction in the Matlab implementation).
Crossover was set to 0.75. The execution time of each scenario on a 32-processor server (model Intel
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Xeon E5-2630L 1.80 GHz) was about 10 min. Again we used the same number of model evaluations for
the random initialization (MO) and the SO+MO approach, splitting them into half and half. Given that
a very long synthetic sequence of all inflows is available [48], many different five-year scenarios can be
explored, each characterized by a different realization of the inflow process (red arrows in Figure 9).

Sample results for two different scenarios are illustrated in Figure 10. They show that solving
the MO problem with random initialization may not allow spanning the Pareto front properly also in
this case.
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Figure 10. Pareto fronts computed with the MO and SO+MO methods solving the optimal management
of the Lower Nile River basin. Two sample scenarios are represented in panels (a,b).

In the case shown in Figure 10a, the random initialization ends up determining a poor
approximation of the Pareto frontier that is dominated by that obtained with the proposed approach.
It spans a very limited range of the objectives. This implies an erroneous determination of the
Utopia point, which corresponds to the Pareto frontier’s extremes, by definition. In the other scenario
(Figure 10b) the approximation is more precise. Still, it covers a narrow portion of the nondominated
set, again determining a wrong position of the Utopia point with the consequences already mentioned
in the negotiation between stakeholders. In both cases, even assuming that the real Pareto frontier is
farther apart from that determined by the SO+MO approach, the solution obtained by the random
initialization has a hypervolume that is just a fraction of that obtained with the proposed approach.
The second attractive characteristic of the method, already seen in the analytical tests, emerges again
here. The Pareto frontier determined by the SO+MO procedure is almost identical in the two scenarios
that are samples of the same inflow time-series. On the contrary, the random initialization may
lead to quite different and less robust results in different scenarios, even when they have the same
statistical properties.

Many other approaches to the multireservoir management problem are possible and have been
explored in a vast body of literature (see, for instance, ref [10] for the specific case of the Nile). We tested
in particular the use of NSGA-II in the synthesis of reservoir control rules. In this case, the decision
variables are the parameters of the assumed rule (from a few to hundreds, depending upon the
assumed analytical form of the rule) and they are determined optimizing the same two objectives
described above. The entire inflow sequence is used in this approach and only one Pareto frontier
is determined. In addition, when taking this quite different management perspective, the random
initialization of the GA prevents a complete definition of the boundary.

6. Conclusions

In contrast to the classical random initialization of MO GAs, the proposed approach uses the
optimal values of the separate single-objective problems as elite members of the initial population.
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Given the elitist mechanism used in most GAs, they remain (with high probability) in the elite set along
the entire search process, allowing a more correct spanning of the Pareto frontier. Extensive testing
with analytical and real-world multiobjective optimization problems, encompassing different numbers
of objectives and decision variables varying from very few to hundreds, demonstrated the procedure’s
effectiveness. It helps solve test problems (DTLZ #1 and #2) more efficiently, especially when
considering many objectives, and allows a better definition of crucial elements to support the
negotiation process among different objectives/stakeholders. The real-world case shows, in fact,
that relying on the standard (random) initialization may produce misleading indications.

The results reported above refer to the classical NSGA-II algorithm, but the proposed
strategy could be implemented in other advanced MOGA solvers like BORG MOEA [49,50].
Further improvements are also possible, by carefully selecting the number of evaluations dedicated to
the SO optimization and that used for the MO one. Depending on the specific characteristics of the
algorithm under consideration, and on the ability to solve single-objective problems, the number of
evaluations of the SO step may be reduced, thus achieving a higher speed while preserving a sufficient
accuracy in the definition of the nondominated frontier.
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