In this study, we address the inverse kinematics problem for an upper-limb exoskeleton by presenting a novel method that guarantees the satisfaction of joint-space constraints, and solves closed-chain mechanisms in a serial robot configuration. Starting from the conventional differential kinematics method based on the inversion of the Jacobian matrix, we describe and test two improved algorithms based on the Projected-Gradient method, that take into account joint-space equality constraints. We use the Harmony exoskeleton as a platform to demonstrate the method. Specifically, we address the joint constraints that the robot maintains in order to match anatomical shoulder movement and the closed-chain mechanisms used for the robot's joint control. Results show good performances of the proposed algorithms, which are confirmed by the ability of the robot to follow the desired task-space trajectory while ensuring the fulfilment of joint-space constraints, with a maximum error of about 0.05 degrees.
A novel inverse kinematics method for upper-limb exoskeleton under joint coordination constraints
Dalla Gasperina S.;Gandolla M.;Pedrocchi A.;
2020-01-01
Abstract
In this study, we address the inverse kinematics problem for an upper-limb exoskeleton by presenting a novel method that guarantees the satisfaction of joint-space constraints, and solves closed-chain mechanisms in a serial robot configuration. Starting from the conventional differential kinematics method based on the inversion of the Jacobian matrix, we describe and test two improved algorithms based on the Projected-Gradient method, that take into account joint-space equality constraints. We use the Harmony exoskeleton as a platform to demonstrate the method. Specifically, we address the joint constraints that the robot maintains in order to match anatomical shoulder movement and the closed-chain mechanisms used for the robot's joint control. Results show good performances of the proposed algorithms, which are confirmed by the ability of the robot to follow the desired task-space trajectory while ensuring the fulfilment of joint-space constraints, with a maximum error of about 0.05 degrees.File | Dimensione | Formato | |
---|---|---|---|
IROS20_1189_FI.pdf
accesso aperto
Descrizione: Accepted Manuscript
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF | Visualizza/Apri |
A_Novel_Inverse_Kinematics_Method_for_Upper-Limb_Exoskeleton_under_Joint_Coordination_Constraints.pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.45 MB
Formato
Adobe PDF
|
3.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.