This paper presents the results of the experimental tests performed to validate the functionality of a variable pitch system (VPS), designed for pitch attitude control of the novel underwater robotic vehicle explorer UX-1. The VPS is composed of a mass suspended from a central rod mounted across the hull. This mass is rotated around the transverse axis of the vehicle in order to perform a change in the inclination angle for navigation in vertical mine shafts. In this work, the equations of motion are first derived with a quaternion attitude representation, and are then extended to include the dynamics of the VPS. The performance of the VPS is demonstrated in real underwater experimental tests that validate the pitch angle control independently, and coupled with the heave motion control system.

Variable Pitch System for the Underwater Explorer Robot UX-1

D. Grande;L. Bascetta;
2020-01-01

Abstract

This paper presents the results of the experimental tests performed to validate the functionality of a variable pitch system (VPS), designed for pitch attitude control of the novel underwater robotic vehicle explorer UX-1. The VPS is composed of a mass suspended from a central rod mounted across the hull. This mass is rotated around the transverse axis of the vehicle in order to perform a change in the inclination angle for navigation in vertical mine shafts. In this work, the equations of motion are first derived with a quaternion attitude representation, and are then extended to include the dynamics of the VPS. The performance of the VPS is demonstrated in real underwater experimental tests that validate the pitch angle control independently, and coupled with the heave motion control system.
2020
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
9781728162133
Shafts
Software architecture
Quaternions
Dynamics
Vehicle dynamics
Motion control
Underwater vehicles
File in questo prodotto:
File Dimensione Formato  
IROS2020-reprint.pdf

Accesso riservato

Descrizione: IROS2020
: Publisher’s version
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1166367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact