This study considers the problem of computing a non-causal minimum-fuel energy management strategy for a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem that arises when the optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by introducing vanishing constraints and a phase specific right-hand side function that accounts for the different powertrain operating modes. The gearbox and driveability requirements translate into combinatorial constraints. These constraints have not been included in previous research; however, they are part of the algorithmic framework for this investigation. We devise a tailored algorithm to solve this problem by extending the combinatorial integral approximation (CIA) technique that breaks down the original mixed-integer nonlinear program into a sequence of nonlinear programs and mixed-integer linear programs, followed by a discussion of its approximation error. Finally, numerical results illustrate the proposed algorithm in terms of solution quality and run time.
Multiphase mixed-integer nonlinear optimal control of hybrid electric vehicles
Robuschi N.;Braghin F.
2021-01-01
Abstract
This study considers the problem of computing a non-causal minimum-fuel energy management strategy for a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem that arises when the optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by introducing vanishing constraints and a phase specific right-hand side function that accounts for the different powertrain operating modes. The gearbox and driveability requirements translate into combinatorial constraints. These constraints have not been included in previous research; however, they are part of the algorithmic framework for this investigation. We devise a tailored algorithm to solve this problem by extending the combinatorial integral approximation (CIA) technique that breaks down the original mixed-integer nonlinear program into a sequence of nonlinear programs and mixed-integer linear programs, followed by a discussion of its approximation error. Finally, numerical results illustrate the proposed algorithm in terms of solution quality and run time.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0005109820305252-main.pdf
accesso aperto
Descrizione: paper
:
Publisher’s version
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.