Aerosol and pollutants, in form of particulates 5–8 μm in main size face every day our respiratory system as natural suspension in air or forced to be inhaled as a coadjutant in a medical therapy for respiratory diseases. This inhalation happens in children to elderly, women and men, healthy or sick and disable people. In this paper we analyzed the inhalation of aerosol in conditions assimilable to the thermal therapy. We use a computational fluid dynamic 3D model to compute and visualize the trajectories of aerosol (3–7–10–25 µm) down to the sixth generation of bronchi, in a steady and dynamic condition (7 µm) set as breath cycle at rest. Results, compared to a set of milestone experimental studies published in literature, allow the comprehension of particles behavior during the inhalation from mouth to bronchi sixth generation, the visualization of jet at larynx constriction and vortices, in an averaged characteristic rigorous geometrical model including tracheal rings. Results on trajectories and deposition show the importance of the including transient physiological breath cycle on aerosol deposition analyses. Numerical and graphical results, may enable the design of medical devices and protocols to make the inhalations more effective in all the users’ population.

Computational fluid dynamic models as tools to predict aerosol distribution in tracheobronchial airways

Atzeni, Claudia;Dubini, Gabriele;Masi, Maurizio;Rossi, Filippo;Bianchi, Elena
2021-01-01

Abstract

Aerosol and pollutants, in form of particulates 5–8 μm in main size face every day our respiratory system as natural suspension in air or forced to be inhaled as a coadjutant in a medical therapy for respiratory diseases. This inhalation happens in children to elderly, women and men, healthy or sick and disable people. In this paper we analyzed the inhalation of aerosol in conditions assimilable to the thermal therapy. We use a computational fluid dynamic 3D model to compute and visualize the trajectories of aerosol (3–7–10–25 µm) down to the sixth generation of bronchi, in a steady and dynamic condition (7 µm) set as breath cycle at rest. Results, compared to a set of milestone experimental studies published in literature, allow the comprehension of particles behavior during the inhalation from mouth to bronchi sixth generation, the visualization of jet at larynx constriction and vortices, in an averaged characteristic rigorous geometrical model including tracheal rings. Results on trajectories and deposition show the importance of the including transient physiological breath cycle on aerosol deposition analyses. Numerical and graphical results, may enable the design of medical devices and protocols to make the inhalations more effective in all the users’ population.
2021
Respiratory particle dynamics, Particle deposition, Bifurcation models, Lagrangian particle tracking.
File in questo prodotto:
File Dimensione Formato  
Atzeni et al. Computational fluid dynamic models as tools to predict aerosol distribution in tracheobronchial airways. Scientific Reports 2021.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1162254
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 6
social impact