Reciprocating Linear Alternators (LAs) are used in many energy harvesting technologies working with pressure waves, such as sea wave energy convertors, Stirling and Thermoacoustic engines. LAs usually incorporate mechanical springs realizing a resonant system which handles the alternating kinetic energy flow stored in the moving mass. In practice, however, parameter inaccuracies and drifts in the operating frequency result in off-resonance operation causing stroke and power drops. This paper presents an adaptive tuning strategy for the electronic stiffness in order to restore resonance and maximum power flow. The algorithm is based on a low-frequency amplitude perturbation of the current component in phase with the stroke. The response of the LA to this low-frequency parametric excitation allows the detection of out-of-resonance conditions and the correction of the current amplitude in phase with stroke in order to restore resonance. The paper discusses an approximated mathematical analysis of the control algorithm and presents validation via simulations.

Resonance tuning in linear alternator drives via direct-current amplitude modulation

Iacchetti M. F.;
2018-01-01

Abstract

Reciprocating Linear Alternators (LAs) are used in many energy harvesting technologies working with pressure waves, such as sea wave energy convertors, Stirling and Thermoacoustic engines. LAs usually incorporate mechanical springs realizing a resonant system which handles the alternating kinetic energy flow stored in the moving mass. In practice, however, parameter inaccuracies and drifts in the operating frequency result in off-resonance operation causing stroke and power drops. This paper presents an adaptive tuning strategy for the electronic stiffness in order to restore resonance and maximum power flow. The algorithm is based on a low-frequency amplitude perturbation of the current component in phase with the stroke. The response of the LA to this low-frequency parametric excitation allows the detection of out-of-resonance conditions and the correction of the current amplitude in phase with stroke in order to restore resonance. The paper discusses an approximated mathematical analysis of the control algorithm and presents validation via simulations.
2018
Proceedings - 2018 23rd International Conference on Electrical Machines, ICEM 2018
978-1-5386-2477-7
Adaptive Control
Energy Harvesting
Linear Permanent Magnet Generators
Maximum Power Point Tracking
Resonance
Wave Power
File in questo prodotto:
File Dimensione Formato  
final.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 588.62 kB
Formato Adobe PDF
588.62 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1161202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact