Linear generators (LGs) are frequently used for energy harvesting with free-piston Stirling engines, thermoacoustic engines, and wave energy converters. This article presents a control strategy to track and maintain LG resonance conditions in real time. The algorithm is based on the LG response to a low-frequency amplitude modulation of the current component in phase with the instantaneous position (d-axis). The averaged product of modulated air-gap power and modulation signal is fed into a controller to adjust the d-axis current and restore resonance. The use of air-gap power instead of dc power improves resonance tracking accuracy and eliminates steady-state low-frequency stroke oscillations. This article presents a full theoretical analysis providing accurate steady-state and small-signal models for control synthesis. The broad experimental validation included in the article proves that the control is able to restore resonance even when the force-source introduces significant additional mechanical impedance.
Current-Modulation-Based On-Line Resonance Tuning Strategy for Linear Generator Drives
Iacchetti M. F.
2021-01-01
Abstract
Linear generators (LGs) are frequently used for energy harvesting with free-piston Stirling engines, thermoacoustic engines, and wave energy converters. This article presents a control strategy to track and maintain LG resonance conditions in real time. The algorithm is based on the LG response to a low-frequency amplitude modulation of the current component in phase with the instantaneous position (d-axis). The averaged product of modulated air-gap power and modulation signal is fed into a controller to adjust the d-axis current and restore resonance. The use of air-gap power instead of dc power improves resonance tracking accuracy and eliminates steady-state low-frequency stroke oscillations. This article presents a full theoretical analysis providing accurate steady-state and small-signal models for control synthesis. The broad experimental validation included in the article proves that the control is able to restore resonance even when the force-source introduces significant additional mechanical impedance.File | Dimensione | Formato | |
---|---|---|---|
19-TIE-2740_R2_final(pure).pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
8.56 MB
Formato
Adobe PDF
|
8.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.