In the framework of Object Oriented Data Analysis, a permutation approach to the two-sample testing problem for network-valued data is proposed. In detail, the present framework proceeds in four steps: (i) matrix representation of the networks, (ii) computation of the matrix of pairwise (inter-point) distances, (iii) computation of test statistics based on inter-point distances and (iv) embedding of the test statistics within a permutation test. The proposed testing procedures are proven to be exact for every finite sample size and consistent. Two new test statistics based on inter-point distances (i.e., IP-Student and IP-Fisher) are defined and a method to combine them to get a further inferential tool (i.e., IP-StudentFisher) is introduced. Simulated data shows that tests with our statistic exhibit a statistical power that is either the best or second-best but very close to the best on a variety of possible alternatives hypotheses and other statistics. A second simulation study that aims at better understanding which features are captured by specific combinations of matrix representations and distances is presented. Finally, a case study on mobility networks in the city of Milan is carried out. The proposed framework is fully implemented in the R package nevada (NEtwork-VAlued Data Analysis).

Model-free two-sample test for network-valued data

Pini A.;Stamm A.;Vantini S.
2020-01-01

Abstract

In the framework of Object Oriented Data Analysis, a permutation approach to the two-sample testing problem for network-valued data is proposed. In detail, the present framework proceeds in four steps: (i) matrix representation of the networks, (ii) computation of the matrix of pairwise (inter-point) distances, (iii) computation of test statistics based on inter-point distances and (iv) embedding of the test statistics within a permutation test. The proposed testing procedures are proven to be exact for every finite sample size and consistent. Two new test statistics based on inter-point distances (i.e., IP-Student and IP-Fisher) are defined and a method to combine them to get a further inferential tool (i.e., IP-StudentFisher) is introduced. Simulated data shows that tests with our statistic exhibit a statistical power that is either the best or second-best but very close to the best on a variety of possible alternatives hypotheses and other statistics. A second simulation study that aims at better understanding which features are captured by specific combinations of matrix representations and distances is presented. Finally, a case study on mobility networks in the city of Milan is carried out. The proposed framework is fully implemented in the R package nevada (NEtwork-VAlued Data Analysis).
2020
Network-valued data
Null-hypothesis testing
Object-oriented data analysis
Permutation test
Shared mobility
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167947319302518-main 2.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Visualizza/Apri
11311-1157176_Pini.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1157176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact