Criteria to identify transitions between dynamic self-similar linear thinning regimes of liquid bridges are of utmost importance in order to accurately interpret results in capillary break-up rheometry. Currently available criteria encompass many experimental difficulties or rely on numerical approaches. Here, we introduce a different set of nondimensional groups, OhL=ηin/γρL and a=R/L, based on the experimentally relevant axial length scale of a liquid bridge L, for viscous-dominated fluids undergoing capillary break-up in air. This framework is further extended to encompass the effect of outer viscous fluids. As a result, we present a two-dimensional operating map in which the boundaries are set by fluid properties and a single geometrical parameter, related to the experimental configuration. This approach establishes guidelines to correctly interpret experimental data and identify transitions in capillary break-up experiments of liquid bridges surrounded by fluids of different viscosities.

Liquid bridge length scale based nondimensional groups for mapping transitions between regimes in capillary break-up experiments

Formenti S.;Briatico Vangosa F.;
2020-01-01

Abstract

Criteria to identify transitions between dynamic self-similar linear thinning regimes of liquid bridges are of utmost importance in order to accurately interpret results in capillary break-up rheometry. Currently available criteria encompass many experimental difficulties or rely on numerical approaches. Here, we introduce a different set of nondimensional groups, OhL=ηin/γρL and a=R/L, based on the experimentally relevant axial length scale of a liquid bridge L, for viscous-dominated fluids undergoing capillary break-up in air. This framework is further extended to encompass the effect of outer viscous fluids. As a result, we present a two-dimensional operating map in which the boundaries are set by fluid properties and a single geometrical parameter, related to the experimental configuration. This approach establishes guidelines to correctly interpret experimental data and identify transitions in capillary break-up experiments of liquid bridges surrounded by fluids of different viscosities.
2020
File in questo prodotto:
File Dimensione Formato  
LH16869FR-5.pdf

accesso aperto

Descrizione: Post print
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 808.63 kB
Formato Adobe PDF
808.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1156879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact