Surgical planning for StereoElectroEncephaloGraphy (SEEG) is a complex and patient specific task, where the experience and medical workflow of each institution may influence the final planning choices. To account for this variability, we developed a data-based Computer Assisted Planning (CAP) solution able to exploit the knowledge extracted by past cases. By the analysis of retrospective patients’ data sets, our system proposes a pool of trajectories commonly used by the institution, which can be selected to initialize a new patient plan. An optimization framework adapts those to the patient's anatomy by optimizing clinical requirements (e.g. distance from vessel, gray matter recording and insertion angle), and adapting its strategy based on the trajectory type selected.The system has been customized based on the data of a single institution. Two neurosurgeons, working in a high-volume hospital, have validated it by using 15 retrospective patient data sets, with more than 200 trajectories reviewed. Both surgeons considered ~81% of the optimized trajectories as clinically feasible (75% inter-rater reliability). Quantitative comparison of distance from vessels, insertion angle and gray matter recording index showed that the optimized trajectories reached superior or comparable values with respect to the original manual plans. The results suggest that a tailored center-based solution could increase the acceptance rate of the automated trajectories proposed.

Knowledge-based automated planning system for StereoElectroEncephaloGraphy: A center-based scenario

Scorza D.;De Momi E.;
2020-01-01

Abstract

Surgical planning for StereoElectroEncephaloGraphy (SEEG) is a complex and patient specific task, where the experience and medical workflow of each institution may influence the final planning choices. To account for this variability, we developed a data-based Computer Assisted Planning (CAP) solution able to exploit the knowledge extracted by past cases. By the analysis of retrospective patients’ data sets, our system proposes a pool of trajectories commonly used by the institution, which can be selected to initialize a new patient plan. An optimization framework adapts those to the patient's anatomy by optimizing clinical requirements (e.g. distance from vessel, gray matter recording and insertion angle), and adapting its strategy based on the trajectory type selected.The system has been customized based on the data of a single institution. Two neurosurgeons, working in a high-volume hospital, have validated it by using 15 retrospective patient data sets, with more than 200 trajectories reviewed. Both surgeons considered ~81% of the optimized trajectories as clinically feasible (75% inter-rater reliability). Quantitative comparison of distance from vessels, insertion angle and gray matter recording index showed that the optimized trajectories reached superior or comparable values with respect to the original manual plans. The results suggest that a tailored center-based solution could increase the acceptance rate of the automated trajectories proposed.
2020
Automated planning
Decision-support
SEEG
Surgical planning
File in questo prodotto:
File Dimensione Formato  
Knowledgebased-automated-planning-system-for-StereoElectroEncephaloGraphy-A-centerbased-scenario2020Journal-of-Biomedical-Informatics.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1156596
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact