In this paper we introduce a general version of the notion of Loewner chains which comes from the new and unified treatment, given in [5], of the radial and chordal variant of the Loewner differential equation, which is of special interest in geometric function theory as well as for various developments it has given rise to, including the famous Schramm-Loewner evolution. In this very general setting, we establish a deep correspondence between these chains and the evolution families introduced in [5]. Among other things, we show that, up to a Riemann map, such a correspondence is one-to-one. In a similar way as in the classical Loewner theory, we also prove that these chains are solutions of a certain partial differential equation which resembles (and includes as a very particular case) the classical Loewner-Kufarev PDE.
Loewner chains in the unit disk
Gumenyuk P.
2010-01-01
Abstract
In this paper we introduce a general version of the notion of Loewner chains which comes from the new and unified treatment, given in [5], of the radial and chordal variant of the Loewner differential equation, which is of special interest in geometric function theory as well as for various developments it has given rise to, including the famous Schramm-Loewner evolution. In this very general setting, we establish a deep correspondence between these chains and the evolution families introduced in [5]. Among other things, we show that, up to a Riemann map, such a correspondence is one-to-one. In a similar way as in the classical Loewner theory, we also prove that these chains are solutions of a certain partial differential equation which resembles (and includes as a very particular case) the classical Loewner-Kufarev PDE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.