In this work, near fully dense NiTi components have been fabricated using a 55.2Ni-Ti (wt.%) powder through selective laser beam melting. The effect of the manufacturing process on mechanical and functional properties of the selected NiTi alloy has been systematically investigated by tuning the hatching distance, h, and the scanning speed, v, in order to define a set of 12 NiTi families. The as-built NiTi parts present phase transformation temperatures higher than those of the feedstock, ascribed to the depletion of Ni during the process. Pseudoelasticity and shape memory responses have been evaluated through uniaxial compression and bending measurements, respectively. Both quasi-static and dynamic analyses have been considered. It is shown that the resulting material may exhibit distinct damping and strain recovery responses depending on the used process parameters.

Towards an understanding of the functional properties of NiTi produced by powder bed fusion

Grande, Antonio Mattia;Rigamonti, Daniela;Bettini, Paolo;Sala, Giuseppe;
2021-01-01

Abstract

In this work, near fully dense NiTi components have been fabricated using a 55.2Ni-Ti (wt.%) powder through selective laser beam melting. The effect of the manufacturing process on mechanical and functional properties of the selected NiTi alloy has been systematically investigated by tuning the hatching distance, h, and the scanning speed, v, in order to define a set of 12 NiTi families. The as-built NiTi parts present phase transformation temperatures higher than those of the feedstock, ascribed to the depletion of Ni during the process. Pseudoelasticity and shape memory responses have been evaluated through uniaxial compression and bending measurements, respectively. Both quasi-static and dynamic analyses have been considered. It is shown that the resulting material may exhibit distinct damping and strain recovery responses depending on the used process parameters.
2021
Additive manufacturing; Damping; NiTi; powder bed fusion; Pseudoelasticity; Shape memory alloys
File in questo prodotto:
File Dimensione Formato  
NESPA_OA_01-20.pdf

Open Access dal 11/11/2021

Descrizione: Paper Open Access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.96 MB
Formato Adobe PDF
3.96 MB Adobe PDF Visualizza/Apri
NESPA03-21.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1151595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact