In this work, near fully dense NiTi components have been fabricated using a 55.2Ni-Ti (wt.%) powder through selective laser beam melting. The effect of the manufacturing process on mechanical and functional properties of the selected NiTi alloy has been systematically investigated by tuning the hatching distance, h, and the scanning speed, v, in order to define a set of 12 NiTi families. The as-built NiTi parts present phase transformation temperatures higher than those of the feedstock, ascribed to the depletion of Ni during the process. Pseudoelasticity and shape memory responses have been evaluated through uniaxial compression and bending measurements, respectively. Both quasi-static and dynamic analyses have been considered. It is shown that the resulting material may exhibit distinct damping and strain recovery responses depending on the used process parameters.
Towards an understanding of the functional properties of NiTi produced by powder bed fusion
Grande, Antonio Mattia;Rigamonti, Daniela;Bettini, Paolo;Sala, Giuseppe;
2021-01-01
Abstract
In this work, near fully dense NiTi components have been fabricated using a 55.2Ni-Ti (wt.%) powder through selective laser beam melting. The effect of the manufacturing process on mechanical and functional properties of the selected NiTi alloy has been systematically investigated by tuning the hatching distance, h, and the scanning speed, v, in order to define a set of 12 NiTi families. The as-built NiTi parts present phase transformation temperatures higher than those of the feedstock, ascribed to the depletion of Ni during the process. Pseudoelasticity and shape memory responses have been evaluated through uniaxial compression and bending measurements, respectively. Both quasi-static and dynamic analyses have been considered. It is shown that the resulting material may exhibit distinct damping and strain recovery responses depending on the used process parameters.File | Dimensione | Formato | |
---|---|---|---|
NESPA_OA_01-20.pdf
Open Access dal 11/11/2021
Descrizione: Paper Open Access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri |
NESPA03-21.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
3.95 MB
Formato
Adobe PDF
|
3.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.