Biological systems autonomously evolve to maximize their efficiency in a continually changing world. On the other hand, artificial neural networks (ANNs) outperform the human ability of object recognition but cannot acquire new information without forgetting trained tasks. To introduce resilience in ANNs, we present a SiOx RRAM-based inference hardware capable of merging the efficiency of convolutional ANNs and the plasticity of spiking networks. We validate the accuracy of the system with MNIST (99.3%), noisyN-MNIST (96%), Fashion-MNIST (93%) and CIFAR-10 (91 %) datasets. We demonstrate that the circuit plastically adapts its operative frequency for power saving and enables continual learning of up to 50% non-trained classes. This optimizes the classification and enables the re-training of the filters, thus overcoming the catastrophic forgetting of standard ANN s.

A SiOx RRAM-based hardware with spike frequency adaptation for power-saving continual learning in convolutional neural networks

I. Muñoz Martín;S. Bianchi;E. Covi;A. Bricalli;D. ielmini
2020-01-01

Abstract

Biological systems autonomously evolve to maximize their efficiency in a continually changing world. On the other hand, artificial neural networks (ANNs) outperform the human ability of object recognition but cannot acquire new information without forgetting trained tasks. To introduce resilience in ANNs, we present a SiOx RRAM-based inference hardware capable of merging the efficiency of convolutional ANNs and the plasticity of spiking networks. We validate the accuracy of the system with MNIST (99.3%), noisyN-MNIST (96%), Fashion-MNIST (93%) and CIFAR-10 (91 %) datasets. We demonstrate that the circuit plastically adapts its operative frequency for power saving and enables continual learning of up to 50% non-trained classes. This optimizes the classification and enables the re-training of the filters, thus overcoming the catastrophic forgetting of standard ANN s.
2020
2020 IEEE Symposium on VLSI Technology, VLSI Technology 2020
File in questo prodotto:
File Dimensione Formato  
VLSI_2020_2.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1146315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact