Federated learning (FL) is emerging as a new paradigm to train machine learning (ML) models in distributed systems. Rather than sharing and disclosing the training data set with the server, the model parameters (e.g., neural networks' weights and biases) are optimized collectively by large populations of interconnected devices, acting as local learners. FL can be applied to power-constrained Internet of Things (IoT) devices with slow and sporadic connections. In addition, it does not need data to be exported to third parties, preserving privacy. Despite these benefits, a main limit of existing approaches is the centralized optimization which relies on a server for aggregation and fusion of local parameters; this has the drawback of a single point of failure and scaling issues for increasing network size. This article proposes a fully distributed (or serverless) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network by iterating local computations and mutual interactions via consensus-based methods. The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing, with intelligence distributed over the end devices. The proposed methodology is verified by the experimental data sets collected inside an Industrial IoT (IIoT) environment.

Federated Learning with Cooperating Devices: A Consensus Approach for Massive IoT Networks

Savazzi S.;Nicoli M.;Rampa V.
2020-01-01

Abstract

Federated learning (FL) is emerging as a new paradigm to train machine learning (ML) models in distributed systems. Rather than sharing and disclosing the training data set with the server, the model parameters (e.g., neural networks' weights and biases) are optimized collectively by large populations of interconnected devices, acting as local learners. FL can be applied to power-constrained Internet of Things (IoT) devices with slow and sporadic connections. In addition, it does not need data to be exported to third parties, preserving privacy. Despite these benefits, a main limit of existing approaches is the centralized optimization which relies on a server for aggregation and fusion of local parameters; this has the drawback of a single point of failure and scaling issues for increasing network size. This article proposes a fully distributed (or serverless) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network by iterating local computations and mutual interactions via consensus-based methods. The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing, with intelligence distributed over the end devices. The proposed methodology is verified by the experimental data sets collected inside an Industrial IoT (IIoT) environment.
2020
5G and beyond networks
distributed signal processing
federated learning
internet of Things
File in questo prodotto:
File Dimensione Formato  
RV_2020_IOTJ.pdf

Accesso riservato

Descrizione: full paper publisher's version
: Publisher’s version
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF   Visualizza/Apri
RV_2020_IoTJ_postprint.pdf

accesso aperto

Descrizione: Post-print
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.52 MB
Formato Adobe PDF
3.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1145013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 307
  • ???jsp.display-item.citation.isi??? 166
social impact