
1

Federated Learning with Cooperating Devices:
A Consensus Approach for Massive IoT Networks

Stefano Savazzi, Member, IEEE, Monica Nicoli, Member, IEEE, Vittorio Rampa, Member, IEEE

Abstract—Federated learning (FL) is emerging as a new
paradigm to train machine learning models in distributed sys-
tems. Rather than sharing, and disclosing, the training dataset
with the server, the model parameters (e.g., neural networks
weights and biases) are optimized collectively by large popula-
tions of interconnected devices, acting as local learners. FL can be
applied to power-constrained IoT devices with slow and sporadic
connections. In addition, it does not need data to be exported to
third parties, preserving privacy. Despite these benefits, a main
limit of existing approaches is the centralized optimization which
relies on a server for aggregation and fusion of local parameters;
this has the drawback of a single point of failure and scaling
issues for increasing network size. The paper proposes a fully
distributed (or server-less) learning approach: the proposed FL
algorithms leverage the cooperation of devices that perform data
operations inside the network by iterating local computations and
mutual interactions via consensus-based methods. The approach
lays the groundwork for integration of FL within 5G and
beyond networks characterized by decentralized connectivity and
computing, with intelligence distributed over the end-devices.
The proposed methodology is verified by experimental datasets
collected inside an industrial IoT environment.

I. INTRODUCTION

Beyond 5G systems are expected to leverage cross-
fertilizations between wireless systems, core networking, Ma-
chine Learning (ML) and Artificial Intelligence (AI) tech-
niques, targeting not only communication and networking
tasks, but also augmented environmental perception services
[1]. The combination of powerful AI tools, e.g. Deep Neural
Networks (DNN), with massive usage of Internet of Things
(IoT), is expected to provide advanced services [2] in several
domains such as Industry 4.0 [3], Cyber-Physical Systems
(CPS) [4] and smart mobility [5]. Considering this envisioned
landscape, it is of paramount importance to integrate emerging
deep learning breakthroughs within future generation wireless
networks, characterized by arbitrary distributed connectivity

c©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other
works. The authors are with the Consiglio Nazionale delle Ricerche, Insitute
of Electronics, Computer and Telecommunication Engineering (IEIIT) and
Politecnico di Milano, DIG department. This work received support from the
CHIST-ERA III Grant RadioSense (Big Data and Process Modelling for the
Smart Industry - BDSI). The paper has been accepted for publication in the
IEEE Internet of Things Journal. The current arXiv contains an additional
Appendix C that describes the database and the Python scripts.

Fig. 1. From left to right: a) FL based on centralized fusion of local model
(or gradient) updates; b) proposed consensus-based FL with distributed fusion
over an infrastructure-less network. Learning of global model parameters W
from local data examples (xh, yh) is obtained by mutual cooperation between
neighbors sharing the local model updates Θt,k .

patterns (e.g., mesh, cooperative, peer-to-peer, or sponta-
neous), along with strict constraints in terms of latency [6]
(i.e., to support Ultra-Reliable Low-Latency Communications
- URLLC) and battery lifetime.

Recently, federated optimization, or federated learning (FL)
[7][8] has emerged as a new paradigm in distributed ML
setups [9]. The goal of FL systems is to train a shared
global model (i.e., a Neural Network - NN) from a federation
of participating devices acting as local learners under the
coordination of a central server for models aggregation. As
shown in Fig. 1.a, FL alternates between a local model
computation at each device and a round of communication
with a server. Devices, or workers, derive a set of local learning
parameters from the available training data, referred to as
local model. The local model Wt,k at time t and device
k is typically obtained via back-propagation and Stochastic
Gradient Descent (SGD) [10] methods using local training
examples (i.e., data xh, and labels yh). The server obtains a
global model by fusion of local models and then feeds back
such model to the devices. Multiple rounds are repeated until
convergence is reached. The objective of FL is thus to build a
global model y = ŷ(W;x) by the cooperation of a number of
devices. Model is characterized by parameters W (i.e., NN

ar
X

iv
:1

91
2.

13
16

3v
1

 [
ee

ss
.S

P]
 2

7
D

ec
 2

01
9

2

weights and biases for each layer) for the output quantity
y and the observed (input) data x. Since it decouples the
ML stages from the need to send data to the server, FL
provides strong privacy advantages compared to conventional
centralized learning methods.

A. Decentralized FL and related works

Next generation networks are expected to be underpinned
by new forms of decentralized, infrastructure-less communi-
cation paradigms [11] enabling devices to cooperate directly
over device-to-device (D2D) spontaneous connections (e.g.,
multihop or mesh). These networks are designed to operate -
when needed - without the support of a central coordinator, or
with limited support for synchronization and signalling. They
are typically deployed in mission-critical control applications
where edge nodes cannot rely on a remote unit for fast
feedback and have to manage part of the computing tasks
locally [12], cooperating with neighbors to self disclose the
information. Typical examples are low-latency safety-related
services for vehicular [13] or industrial [14] applications.
Considering these trends, research activities are now focusing
on fully decentralized (i.e., server-less) learning approaches.
Optimization of the model running on the devices with privacy
constraints is also critical [16] for human-related applications.

To the authors knowledge, few attempts have been made to
address the problem of decentralized FL. In [17][18], a gossip
protocol is adopted for ML systems. Through sum-weight gos-
sip, local models are propagated over a peer-to-peer network.
However, in FL over D2D networks, gossip-based methods
cannot be fully used because of medium access control (MAC)
and half-duplex constraints, which are ignored in these early
approaches. More recently, [19] considers an application of
distributed learning for medical data centers where several
servers collaborate to learn a common model over a fully
connected network. However, network scalability/connectivity
issues are not considered at all. In [20], a segmented gossip
aggregation is proposed. The global model is split into non
overlapping subsets and local learners aggregate the segmen-
tation sets from other learners. Having split the model, by
introducing ad-hoc subsets and segment management tasks, the
approach is extremely application-dependent and not suitable
for more general ML contexts. Finally, [21][22] propose a
peer-to-peer Bayesian-like approach to iteratively estimate the
posterior model distribution. Focus is on convergence speed
and load balancing, yet simulations are limited to a few nodes,
and the proposed method cannot be easily generalized to
NN systems trained by incremental gradient (i.e., SGD) or
momentum based methods.

B. Contributions

This paper proposes the application of FL principles to
massively dense and fully decentralized networks that do not
rely upon a central server coordinating the learning process.
As shown in Fig. 1.b, the proposed FL algorithms leverage

the mutual cooperation of devices that perform data operations
inside the network (in-network) via consensus-based methods
[23]. Devices independently perform training steps on their
local dataset (batches) based on a local objective function, by
using SGD and the fused models received from the neighbors.
Next, similarly to gossip [17], devices forward the model
updates to their one-hop neighborhood for a new consensus
step. Unlike the methods in [17]-[22], the proposed approach
is general enough to be seamlessly applied to any NN model
trained by SGD or momentum methods. In addition, in this
paper we investigate the scalability problem for varying NN
model layer size, considering large and dense D2D networks
with different connectivity graphs. These topics are discussed,
for the first time, by focusing on an experimental Industrial
IoT (IIoT) setting.

The paper contributions are summarized in the following:
• the federated averaging algorithm [9][15] is revisited to

allow local learners to implement consensus techniques
by exchanging local model updates: consensus also ex-
tends existing gossip approaches;

• a novel class of FL algorithms based on the iteratively ex-
change of both model updates and gradients is proposed
to improve convergence and minimize the number of
communication rounds, in exchange for a more intensive
use of D2D links and local computing;

• all presented algorithms are validated over large scale
massive networks with intermittent, sporadic or varying
connectivity, focusing in particular on an experimental
IIoT setup, and considering both complexity, convergence
speed, communication overhead, and average execution
time on embedded devices.

The paper is organized as follows. Sect. II reviews the FL
problem. Sect. III proposes two consensus-based algorithms
for decentralized FL. Validation of the proposed methods is
first addressed in Sect. IV on a simple network and scenario.
Then, in Sect. V the validation is extended to a large scale
setup by focusing on a real-world problem in the IIoT domain.
Finally, Sect. VI draws some conclusions and proposes future
investigations.

II. FL FOR MODEL OPTIMIZATION

The FL approach defines an incremental algorithm for
model optimization over a large population of devices. It be-
longs to the family of incremental gradient algorithms [26][29]
but, unlike these setups, optimization typically focuses on non-
convex objectives that are commonly found in NN problems.
The goal is to learn a global model ŷ(W;x) for inference
problems (i.e., classification or regression applications) that
transforms the input observation vector x into the outputs
ŷ ∈ {yc}Cc=1, with model parameters embodied in the matrix
W while C is the output size. Observations, or input data, are
stored across K devices connected with a central server that
coordinates the learning process. A common, and practical,
assumption is that the number of participating devices K is
large (K � 1) and they have intermittent connectivity with the

3

server. The cost of communication is also much higher than
local computation, in terms of capacity, latency and energy
consumption [25]. In this paper, we will focus specifically on
NN models. Therefore, considering a NN of Q ≥ 1 layers,
the model iteratively computes a non-linear function f(·) of a
weighted sum of the input values, namely

ŷ(W;x) = fQ
(
wT

0,QhQ−1 + w1,Q

)
(1)

with hq = fq
(
wT

0,qhq−1 + w1,q

)
, q = 1, ..., Q− 1, being the

hidden layers and h0 = x the input vector. The matrix

W =
[
wT

0,1,w1,1, ...,w
T
0,Q,w1,Q

]
(2)

collects all the parameters of the model, namely the weights
w0,q ∈ Rd1×d2 and the biases w1,q ∈ Rd2×1 for each defined
layer, with d1 and d2 the corresponding input and output layer
dimensions, respectively1. FL applies independently to each
layer2 of the network. Therefore, in what follows, optimiza-
tion focuses on one layer q and the matrix (2) reduces to
W =

[
wT

0,q ,w1,q

]
. The parameters of the convolutional layers,

namely input, output and kernel dimensions, can be easily
reshaped to conform with the above general representation.

In FL it is commonly assumed [7][8] that a large database
of examples is (unevenly) partitioned among the K devices,
under non Identical Independent Distribution (non-IID) as-
sumptions. Examples are thus organized as the tuples (xh, yh),
h = 1, ..., E where xh represents the data, while yh are the
desired model outputs ŷ. The set of examples, or training data,
available at device k is Ek, where Ek = |Ek| � E is the
size of the k-th dataset under the non-IID assumption. The
training data on a given device is thus not representative of
the full population distribution. In practical setups (see Sect.
V), data is collected individually by the devices based on their
local/partial observations of the given phenomenon.

Unlike incremental gradient algorithms [30][31], FL of
model W is applicable to any finite-sum objective L(W) of
the general form

min
W

L(W) = min
W

K∑
k=1

Ek

E
× Lk(W)︸ ︷︷ ︸,

L(W)

(3)

where Lk(W) is the loss, or cost, associated with the k-th
device

Lk(W) =
1

Ek

Ek∑
h=1

`(xh, yh;W) (4)

and `(xh, yh;W) is the loss of the predicted model over the
Ek examples (xh, yh) observed by the device k, assuming
model parameters W to hold.

1To simplify the notation, here we assume that the layers have equal
input/output size in W, but the model can be generalized to account for
different dimensions (see Sect. V).

2Weights and biases are also optimized independently.

In conventional centralized ML (i.e., learning without fed-
eration), used here as benchmark, the server collects all local
training data from the devices and obtains the optimization
of model parameters by applying an incremental gradient
method over a number of batches from the training dataset.
For iteration t, the model parameters are thus updated by the
server according to

Wt+1 = Wt − µs ×∇L(Wt), (5)

where µs is the SGD step size and ∇L(Wt) = ∇Wt
[L(Wt)]

the gradient of the loss in (3) over the assigned batches
and w.r.t. the model Wt. Backpropagation is used here for
gradients computation. The model estimate at convergence is
denoted as W∞ = limt→∞Wt.

Rather than sharing the training data with the server, in
FL the model parameters W are optimized collectively by
interconnected devices, acting as local learners. On each
round t of communication, the server distributes the current
global model Wt to a subset St of nt devices. The devices
independently update the model Wt using the gradients (SGD)
from local training data as

Wt+1,k = Wt − µ×∇Lt,k(Wt), (6)

where ∇Lt,k(Wt) = ∇Wt [Lt,k(Wt)] represents the gradient
of the loss (4) observed by the k-th device and w.r.t. the
model Wt. Updates ∇Lt,k (6), or local models Wt+1,k, are
sent back to the server, after quantization, anonymization [7]
and compression stages, modelled here by the operator PΘ.
A global model update is obtained by the server through
aggregation according to

Wt+1 = Wt − µs
1

nt

nt∑
k=1

Ek

E
PΘ [∇Lt,k(Wt)] . (7)

Convergence towards the centralized approach (5) is achieved
if limt→∞Wt = W∞. Notice that the learning rate µs is
typically kept smaller [9] compared with centralized learning
(5) on large datasets. Aggregation model (7) is referred to as
Federated Averaging (FA) [7][15]. As far as convergence is
concerned, for strongly convex objective L(W) and generic
local solvers, the general upper bound on global iteration
number NI is given in [24] and relates both to global (γG)
and local (γL) accuracy according to the equation NI =
O (log [1/ (1− γG)] /γL).

III. A CONSENSUS-BASED APPROACH TO IN-NETWORK FL

The approaches proposed in this section allow the devices to
learn the model parameters, solution of (3), by relying solely
on local cooperation with neighbors, and local in-network (as
opposed to centralized) processing. The interaction topology
of the network is modelled as a directed graph G = (V, ξ)
with the set of nodes V = {1, 2, ...,K} and edges (links) ξ.
As depicted in Fig. 1, the K distributed devices are connected
through a decentralized communication architecture based on
D2D communications. The neighbor set of device k is denoted

4

Algorithm 1 Consensus-based Federated Averaging
1: procedure CFA(Nk̄, εt, αt,i)
2: initialize W0,k ← device k
3: for each round t = 1, 2, ... do . Main loop
4: receive{Wt,i}i∈Nk̄

. RX from neighbors
5: ψt,k ←Wt,k

6: for all devices i ∈ Nk̄ do
7: ψt,k ← ψt,k + εtαt,i (Wt,i −Wt,k)
8: end for
9: Wt+1,k = ModelUpdate(ψt,k)

10: send(Wt+1,k) . TX to neighbors
11: end for
12: end procedure
13: procedure MODELUPDATE(ψt,k) . Local SGD
14: B ← mini-batches of size B
15: for batch b ∈ B do . Local model update
16: ψt,k ← ψt,k − µt∇Lt,k(ψt,k)
17: end for
18: Wt,k ← ψt,k

19: return(Wt,k)
20: end procedure

as Nk = {i ∈ V : (i, k) ∈ ξ}, with cardinality |Nk|. Notice
that we include node k in the set Nk, while Nk̄ = Nk\ {k}
does not. As introduced in the previous section, each device
has a database Ek of examples (xh, yh) that are used to train
a local NN model Wt,k at some time t (epoch). The model
maps input features x into outputs ŷ(Wt,k;x) as in (1). A
cost function, generally non-convex, as Lk(Wt,k) in (4), is
used to optimize the weights Wt,k of the local model.

The proposed FL approaches exploit both adaptive diffusion
[31] and consensus tools [23][27] to optimally leverage the
(possibly large) population of federated devices that cooperate
for the distributed estimation of the global model W, while
retaining the trained data. Convergence is thus obtained if
∀k it is limt→∞Wt,k = W∞. Distributed in-network model
optimization must satisfy convergence time constraints, as well
as minimize the number of communication rounds. In what
follows, we propose two strategies that differ in the way the
model updates Wt,k and gradients ∇Lt,k are computed and
updated.

A. Consensus based Federated Averaging (CFA)

The first strategy extends the centralized FA and it is
described in the pseudocode fragment of Algorithm 1. It is
referred to as Consensus-based Federated Averaging (CFA).

After initialization3 of W0,k at time t = 0, on each
communication round t > 0, device k sends its model updates
Wt,k (once per round) and receives weights from neighbors

3Each device hosts a model W of the same architecture and initialized
similarly.

Wt,i, i ∈ Nk̄. Based on received data, the device updates its
model Wt,k sequentially to obtain the aggregated model

ψt,k = Wt,k + εt
∑
i∈Nk̄

αk,i (Wt,i −Wt,k) , (8)

where εt is the consensus step-size and αk,i, i ∈ Nk̄, are
the mixing weights for the models. Next, gradient update is
performed using the aggregated model ψt,k as

Wt+1,k = ψt,k − µt∇Lt,k(ψt,k), (9)

by running SGD over a number of mini-batches of size B <
Ek. Model aggregation (8) is similar to the sum-weight gossip
protocol [17], [18], when setting εt = 1. However, mixing
weights αk,i are used here to combine model innovations,
{Wt,i −Wt,k}, i ∈ Nk̄. In addition, the step-size εt controls
the consensus stability.

Inspired by FA approaches (Sect. II), the mixing weights
αk,i are chosen as

αk,i =
Ei∑

i∈Nk̄
Ei
. (10)

Other choices are based on weighted consensus strategies [23],
where the mixing weights αk,i are adapted on each epoch
t based on current validation accuracy or loss metrics. The
consensus step-size εt can be chosen as εt ∈ (0, 1/∆) , where
∆ = maxk

(∑
i∈Nk̄

αk,i

)
, namely the maximum degree of

the graph G [28] that models the interaction topology of the
network. Notice that the graph G has adjacency matrix A =
[ak,i] where ak,i = αk,i iff i ∈ Nk̄ and ak,i = 0 otherwise.
Beside consensus step-size, it is additionally assumed that the
SGD step-size µt is optimized for convergence: namely, the
objective function value Lt,k is decreasing with each iteration
of gradient descent, or after some threshold. Convergence is
further analyzed in Sect. V with experimental data.

By defining as Θt,k the set of parameters to be exchanged
among neighbors, CFA requires the iterative exchange of
model updates Wt,i, ∀i ∈ Nk, therefore

Θt,k := [Wt,k] . (11)

B. Consensus based Federated Averaging with Gradients Ex-
change (CFA-GE)

The second strategy proposes the joint exchange of local
gradients and model updates by following the four-stage
iterative procedure illustrated in the Fig. 2.a for epoch t. The
new algorithm is referred to as Consensus-based Federated
Averaging with Gradients Exchange (CFA-GE). The first stage
(step #1) is similar to CFA and obtains ψt,k by consensus-
based model aggregation in (8). Before using ψt,k for the
local model update, it is fed back to the same neighbors
(“negotiation” stage in step #2 of Fig. 2.b). Model ψt,k is
then used by the neighbors to compute the gradients

∇Lt,i(ψt,k), ∀i ∈ Nk̄ (12)

5

Fig. 2. From top to bottom: a) CFA-GE; b) CFA-GE with two-stage
negotiation and implementation (left) compared against CFA w/o gradient
exchange (right).

using their local data. Notice that all gradients are computed
over a single batch4 (or mini-batch) of local data, while the
chosen batch/mini-batch can change on consecutive commu-
nication rounds. Gradients are sent back to the device k in
step #3. Compared with CFA, this step allows every device
to exploit additional gradients using neighbor data, and makes
the learning much faster. On the device k, the local model is
thus updated using the received gradients (12) according to

ψ̃t,k = ψt,k − µt

∑
i∈Nk̄

βk,iPΘ

[
∇Lt,i(ψt,k)

]
, (13)

where βk,i are the mixing weights for the gradients. Finally,
as done for CFA in (9), the gradient update is performed using
now the aggregated model ψ̃t,k (13) and local data mini-
batches

Wt+1,k = ψ̃t,k − µt∇Lt,k(ψ̃t,k). (14)

To summarize, for each device k, CFA-GE combines the
gradients ∇Lt,k(ψt,k) computed over the local data with the
gradients ∇Lt,i(ψt,k), i ∈ Nk̄ obtained by the neighbors
over their batches. The negotiation stage (13)-(14) is similar
to the diffusion strategy proposed in [30][31]. In particular,
we aggregate the model first (8), then we run one gradient
descent round using the received gradients (13), and finally,
a number of SGD rounds (14) using local mini-batches. As

4Sending multiple gradients (corresponding to mini-batches) is an alterna-
tive option, not considered here for bandwidth limitations.

Algorithm 2 CFA with gradients exchange
1: procedure CFA-GE(Nk̄, εt, αt,i, βt,i)
2: initialize W0,k,ψ1,k,∇L1,k(ψ0,k)
3: for each round t = 2, ... do . Main loop
4: receive

{
ψt,i,∇Lt,i(ψt−1,k)

}
i∈Nk̄

. RX
5: ψt,k ←Wt,k

6: for all devices i ∈ Nk̄ do
7: ψt,k ← ψt,k + εtαt,i

(
ψt,i −Wt,k

)
8: compute ∇Lt+1,k(ψt,i) . gradients
9: ∇Lt+1,k ← in (17) . MEWMA update

10: end for
11: ψ̃t,k ← ψt,k

12: for all devices i ∈ Nk̄ do
13: ψ̃t,k←ψ̃t,k−µtβt,i∇Lt,i(ψt−1,k)
14: end for
15: Wt+1,k ← ModelUpdate(ψ̃t,k)
16: ψt+1,k ← ψt,k

17: ∇Lt+1,k :=
{
∇Lt+1,k,∀i ∈ Nk̄

}
.

18: send(ψt+1,k,∇Lt+1,k) . TX to neighbors
19: end for
20: end procedure

revealed in Sect. V, optimization of the mixing weights βk,i
for the gradients is critical for convergence. Considering that
the gradients in (12), obtained from neighbors, are computed
over a single batch of data, as opposed to local data mini-
batches, a reasonable choice is βk,i > 1, ∀i ∈ Nk̄. This aspect
is further discussed in Sect. V.

C. Two-stage negotiation and implementation aspects

Unlike CFA, CFA-GE requires a larger use of the band-
width and more communication rounds for the synchronous
exchange of the gradients. More specifically, it requires a more
intensive use of the D2D wireless links for sharing models
first during the negotiations (step #2) and then forwarding
gradients (step #3). In addition, each device should wait for
neighbor gradients before applying any model update. Here,
the proposed implementation simplifies the negotiation proce-
dure to improve convergence time (and latency). In particular,
it resorts to a two-stage scheme, while, likewise CFA, each
device can perform the updates without waiting for a reply
from neighbors. Pseudocode is highlighted in Algorithm 2.
Communication rounds vs. epoch t for CFA-GE are detailed
in Fig. 2.b and compared with CFA. Considering the device k,
with straightforward generalization, the following parameters
are exchanged with neighbors at epoch t as

Θt,k :=
[
ψt,k,∇Lt,k

]
, (15)

namely the model updates (aggregations) ψt,k and the gradi-
ents ∇Lt,k, organized as

∇Lt,k :=
{
∇Lt,k(ψt−1,i),∀i ∈ Nk̄

}
. (16)

In the proposed two stage implementation, the negotiation
step (step #2 in Fig. 2.a) is not implemented as it requires

6

a synchronous model sharing. Therefore, ∀i ∈ Nk̄ the model
aggregations ψt,i are not available by device k at epoch
t, or, equivalently, the device k does not wait for such
information from the neighbors. The gradients ∇Lt,k(ψt,i)

are now predicted as ∇Lt,k(ψt−1,i) using the past (outdated)
models ψt−1,i,ψt−2,i, ... from the neighbors. In line with
momentum based techniques (see [32] and also Appendix B),
for the predictions ∇Lt,k we use a multivariate exponentially
weighted moving average (MEWMA) of the past gradients

∇Lt,k(ψt−1,i) = %∇Lt,k(ψt−1,i) + (1− %)∇Lt−1,k (17)

ruled by the hyper-parameter 0 < % ≤ 1. Setting % = 1, the
gradient is estimated using the last available model (ψt−1,i):
∇Lt,k(ψt−1,i) = ∇Lt,k(ψt−1,i). A smaller value % < 1

introduces a memory (1 − %)∇Lt−1,k with ∇Lt−1,k =
∇Lt−1,k(ψt−2,i, ...) depending on the past models ψt−2,i, ...,.
This is shown, in Sect. V, to be beneficial on real data.

Assuming that the device k is able to correctly receive and
decode the messages from the neighbors Θt,i =

[
ψt,i,∇Lt,i

]
,

∀i ∈ Nk̄ at epoch t, the model aggregation step changes from
(8) to

ψt,k = Wt,k + εt
∑
i∈Nk̄

αk,i

(
ψt,i −Wt,k

)
, (18)

while the model update step using the received gradients is
now

ψ̃t,k = ψt,k − µt

∑
i∈Nk̄

βk,iPΘ

[
∇Lt,i(ψt−1,k)

]
(19)

and replaces (13). Finally, a gradient update on local data is
done as in (14). Notice that Algorithm 2 implements (19) by
running one gradient descent round per received gradient (lines
12-14) to allow for asynchronous updates. In the Appendix B,
we discuss the application of CFA and CFA-GE to advanced
SGD strategies designed to leverage momentum information
[10][32].

D. Communication overhead and complexity analysis

With respect to FA, the proposed decentralized algorithms
take some load off of the server, at the cost of additional in-
network operations and increased D2D communication over-
head. Overhead is quantified here for both CFA and CFA-GE
in terms of the size of the parameters Θt,k that need to be
exchanged among neighbors. CFA extends FA and, similarly,
requires each node to exchange only local model updates at
most once per round. The overhead, or the size of Θt,k, thus
corresponds to the model size (11). For a generic DNN model
of Q layers, the model Wt,k size can be approximated in the
order of O(d1d2Q)� E. This is several order of magnitude
lower than the size of the input training data, in typical ML
and deep ML problems. As in (15), CFA-GE requires the
exchange of local model aggregations ψt,k and one gradient
∇Lt,k(ψt−1,i) per neighbor, ∀i ∈ Nk̄. Overhead now scales

with O(d1d2Q |Nk|), where |Nk| = |Nk̄|+1. This is still con-
siderably lower than the training dataset size, provided that the
number of participating neighbors is limited. In the examples
of Sect. V, we show that |Nk̄| = 2 neighbors are sufficient,
in practice, to achieve convergence: notice that the number of
active neighbors is also typically small to avoid traffic issues
[37]. Finally, quantization PΘ [·] of the parameters can be also
applied to limit the transmission payload, with the side effect
to improve also global model generalization [38].

Besides overhead, CFA and CFA-GE computational com-
plexity scales with the global model size and it is ruled by
the number of local SGD rounds. However, unlike FA, model
aggregations and local SGD are both implemented on the
device. With respect to CFA, CFA-GE computes up to |Nk̄|
additional gradients ∇Lt,k(ψt−1,i) using neighbor models
ψt−1,i and up to |Nk̄| additional gradient descent rounds
(19) for local model update using the neighbor gradients. A
quantitative evaluation of the overhead and the execution time
of local computations is proposed in Sect. V by comparing
FA, CFA and CFA-GE using real data and low-power System
on Chip (SoC) devices.

Considering now networking aspects, the cost of a D2D
communication is much lower than the cost of a server con-
nection, typically long-range. D2D links cover shorter ranges
and require lower transmit power: communication cost is thus
ruled by the energy spent during receiving operations (radio
wake-up, synchronization, decoding). Besides, in large-scale
and massive IIoT networks, sending model updates to the
server, as done in conventional FA, might need several D2D
communication rounds as relaying information via neighbor
devices. D2D communications can serve as an underlay to the
infrastructure (server) network and can thus exploit the same
radio resources. Such two-tier networks are a key concept in
next generation IoT and 5G [39] scenarios.

Finally, optimal trading between in-network and server-
side operations is also possible by alternating rounds of FA
with rounds of in-network consensus (CFA or CFA-GE). This
corresponds to a real-world scenario where communication
with the server is available, but intermittent, sporadic, unreli-
able or too costly. During initialization, i.e. at time t = t0,
devices might use the last available global model received
from the server, Wt0,k = WNs

, after Ns communication
rounds of the previous FA phase, and obtain a local update
via SGD: Wt+1,k = WNs − µt∇Lt,k(WNs). This is fed-
back to neighbors to start CFA or CFA-GE iterations.

IV. CONSENSUS-BASED FL: AN INTRODUCTORY EXAMPLE

In this section, we give an introductory example of
consensus-based FL approaches comparing their performance
to conventional FL methods. We resort here to a network
of K = 4 wireless devices communicating via multihop as
depicted in Fig. 3 without any central coordination. Although
simple, the proposed topology is still useful in practice to
validate the performance of FL under the assumption that
no device has direct (i.e., single-hop) connection with all

7

nodes in the network. More practical usage scenarios are
considered in Sect. V. Without affecting generality, the devices
collaboratively learn a global model ŷ(W;x) that is simplified
here as a NN model with only one fully connected layer
(Q = 1):

ŷ(W;x) = f1

(
wT

0,1x + w1,1

)
,W=

[
wT

0,1,w1,1

]
. (20)

Considering the 4-node network layout, the neighbor sets
consist of N1̄ = {2}, N2̄ = {1, 3}, N3̄ = {2, 4}, N4̄ = {3}.
Each k-th device has a database of Ek local training data,
Ek = {(xh, yh)}Ek

h=1, that are here taken from the MNIST
(Modified National Institute of Standards and Technology)
image database [40] of handwritten digits. Output labels yh
take C = 10 different values (from digit 0 up to 9), model
inputs x have size d1 = 784 (each image is represented by
28 × 28 grayscale pixels), while outputs ŷ have dimension
d2 = C = 10. In Fig. 3, each device obtains the same number
of training data (Ek = 400 images) taken randomly (IID)
from the database consisting of E = 1600 images. Non-IID
data distribution is investigated in Fig. 4.

We assume that each device has prior knowledge of the
model (20) structure at the initial stage (t = 0), namely the
input/output size (d1, d2) and the non-linear activation f1(·).
Moreover, each of the K = 4 local models starts from the
same random initialization W0,k for t = 0 [15]. Every new
epoch t > 0, the devices perform consensus iterations using
the model parameters received from the available neighbors
during the previous epoch t−1. Local model updates for CFA
(9) and CFA-GE (14) use the cross-entropy loss for gradient
computation

Lt,k = −
∑
h

yh log [ŷ(Wt,k;xh)] , (21)

where the sum is computed over mini-batches of size B =
5. The devices thus make one training pass over their local
dataset consisting of Ek/B = 80 mini-batches. For CFA, we
choose εt = 1, µt = 0.025 and mixing parameters as in (10).
For CFA-GE, the mixing parameters for gradients (13) are
selected as µtβt,k = 0.025 and µtβt,i = 0.2, ∀i ∈ Nk̄, while
the MEWMA hyper-parameter is set to % = 0.99.

On every epoch t, performance is analyzed in terms
of validation loss (21) for all K = 4 models. For
testing, we considered the full MNIST validation dataset
(xh,val, yh,val) consisting of 60.000 images. The loss L(val)

t,k =
−
∑

h yh,val log [ŷ(Wt,k;xh,val)] decreases over consecutive
epochs as far as the model updates Wt,k converge to the true
global model W∞.

In Figs. 3-4, we validate the performances of the CFA
algorithms in case of uniform (Fig. 3) and uneven (Fig. 4) data
distribution among the devices. More specifically, Fig. 3 com-
pares CFA and CFA-GE, with CFA-GE using the two-stage
negotiation algorithm of Sect. III-C and starting5 at epoch
t = 3. On the other hand, in Fig. 4, we consider the general

5At initial epochs t = 0, 1, 2 we use the 4-stage negotiation algorithm,
described in Sect. III-B.

Fig. 3. Comparison of FL methods over a multihop wireless network of
K = 4 devices. Validation loss vs. iterations over the full MNIST dataset
for all devices: CFA (circle markers), CFA-GE (solid lines without markers),
FA (red line), isolated model training (diamond markers), and centralized ML
without federation (dashed line). Iterations correspond to epochs when running
inside the server, or communication rounds when running consensus or FA.

Fig. 4. Effect of non-IID unbalanced training data over device k = 1 and
k = 3 (red lines) of a multihop wireless network composed of K = 4
devices. Validation loss over the full MNIST dataset vs. epochs (or consensus
iterations). Comparison between CFA (solid lines), isolated model training
(diamond markers), and centralized ML without federation (dashed line) is
also presented. Non-IID data distribution is shown visually on top, for each
case.

8

case where the data is unevenly distributed, while partitioning
among devices is also non IID. Herein, we compare two cases.
In the first one, device 1 (Fig. 4 on the left) is located at
the edge of the network and connected to one neighbor only.
It obtains Ek = 80 images from only 6 of the available
C classes, namely the 5% of the training database of E
images. Device 3, connected with 2 neighbors, retains a larger
database (Ek = 720 images, 45% of the training database).
In the second case (on the right), the situation is reversed.
As expected, compared with the first case, convergence is
more penalized in the second case, although CFA running on
device 3 (red lines) can still converge. As shown in Fig. 3,
CFA-GE (solid lines without markers) further reduces the loss,
compared with CFA (circle markers). Effect of an unbalanced
database for CFA-GE is also considered in Sect. V.

FL and consensus schemes have been implemented using
the TensorFlow library [33], while real-time D2D connectivity
is simulated by a MonteCarlo approach. All simulations are
running for a maximum of 60 epochs. Besides the proposed
consensus strategies, validation loss is also computed for
three different scenarios. The first one is labelled as “isolated
training” and it is evaluated in Fig. 3 for IID and in Fig.
4 for non IID data. In this scenario, K = 4 models are
trained without any cooperation from neighbors (or server)
by using locally trained data only. This use case is useful to
highlight the benefits of mutual cooperation that are significant
after epoch t = 9 for IID and after t = 3 epochs for non
IID, according to the considered network layout. Notice that
isolated training is also limited by overfitting effects after
iteration t = 30, as clearly observable in Fig. 3 and in Fig.
4, since local/isolated model optimization is based only on
few training images, compared with the validation database
of 60.000 images. Consensus and mutual cooperation among
devices thus prevents such overfitting. The second scenario
“centralized ML without federation” (dashed lines in Figs. 3
and 4) corresponds to (5) and gives the validation loss obtained
when all nodes are sending all their locally trained data
directly to the server. It serves as benchmark for convergence
analysis as provides the optimal parameter set W considering
E = 1.600 images for training. Notice that the CFA-GE
method closely approaches the optimal parameter set and
converges faster than CFA. The third scenario implements the
FA strategy (see Sect. II) that relies on server coordination,
while cooperation among devices through D2D links is not
enabled. As depicted in Fig. 3, the convergence of the FA
validation loss is similar to those of devices 2 and 3, although
convergence speed is slightly faster after epoch t = 55. In
fact, for the considered network layout, devices 2 and 3 can
be considered a good replacement of the server, being directly
connected with most of the devices. In the next section,
we consider a more complex device deployment in a IIoT
challenging scenario.

V. VALIDATION IN AN EXPERIMENTAL IIOT SCENARIO

The proposed in-network FL approaches of Sect. IV are val-
idated here on a real-world IIoT use case. Data are partitioned
over IIoT devices and D2D connectivity [14] is used here
as a replacement to centralized communication infrastructure
[34]. As depicted in Fig. 5, the reference scenario consists
of a large-scale and dense network [35] of autonomous IIoT
devices that are sensing their surroundings using Frequency
Modulated Continuous Wave (FMCW) radars [45] working
in the 122 GHz (sub-Thz) band. Radars in the mmWave (or
sub-THz) bands are very effective in industrial production
lines (or robotic cells, as in Fig. 5.b) for environment/obsta-
cle detection [36], velocity/distance measurement and virtual
reality applications [43]. In addition, mmWave radios have
been also considered as candidates for 5G new radio (NR)
allocation. They thus represent promising solutions towards the
convergence of dense communications and advanced sensing
technologies [3].

In the proposed setup, the above cited devices are employed
to monitor a shared industrial workspace during Human-Robot
Collaboration (HRC) tasks to detect and track the position
of the human operators (i.e., the range distance from the
individuals) that are moving nearby a robotic manipulator
inside a fenceless space [42]. In industrial shared workplaces,
measuring positions and distance is mandatory to enforce a
worker protection policy, to implement collision avoidance,
reduction of speed, anticipating contacts of limited entity,
etc. In addition, it is highly desirable that operators are set
free from wearable devices to generate location information
[3]. Tracking of body movements must also not depend on
active human involvement. For static background, the problem
of passive body detection and ranging can be solved via
background subtraction methods, and ML tools (see [44]
and references therein). The presence of the robot, often
characterized by a massive metallic size, that moves inside
the shared workplace, poses additional remarkable challenges
in ranging and positioning, because robots induce large, non-
stationary, and fast RF perturbation effects [42].

The radars collect a large amount of data, that cannot
be shipped back to the server for training and inference,
due to the latency constraints imposed by the worker safety
policies. In addition, direct communication with the server
is available but reserved to monitor the robot activities (and
re-planning robotic tasks in case of dangerous situations)
[42] and should not be used for data distribution. Therefore,
to solve the scalability challenge while addressing latency,
reliability and bandwidth efficiency, we let the devices perform
model training without any server coordination but using
only mutual cooperation with neighbors. We thus adopt the
proposed in-network FL algorithms relying solely on local
model exchanges over the D2D active links.

In what follows, we first describe the dataset and the ML
model ŷ(W;x) adopted for body motion recognition. Next,
we investigate the convergence properties of CFA and CFA-
GE solutions, namely the required number of communication

9

Fig. 5. From left to right: a) experimental setup: network and sensing model for in-network federated learning with Convolutional Neural Network (CNN,
top-left corner) examples whose parameters are shown in Table I; b) industrial scenario (CNR-STIIMA de-manufacturing pilot plant) and deployed radars; c)
examples xh of measured beat signal spectrum (512 point FFT) for selected classes (c = 0, 1, 3, 5, 6).

rounds (i.e., latency) for varying connectivity layouts, network
size and hyper-parameters choices, such as mixing weights
and step sizes. Finally, we provide a quantitative evaluation of
the communication overhead and of the local computational
complexity comparing all proposed algorithms.

A. Data collection and processing

In the proposed setup, the radar (see [43] for a review)
transmitting antennas radiate a sweeped modulated waveform
[45] with bandwidth equal to 6 GHz, carrier frequency 119
GHz, and ramp (pulse) duration set to T = 1 ms. The
radar echoes, reflected by moving objects are mixed at the
receiver with the transmitted signal to obtain the beat signal.
Beat signals are then converted in the frequency domain
(i.e., beat signal spectrum) by using a 512-point Fast Fourier
Transform (FFT) and averaged over 10 consecutive frames
(i.e., frequency sweeps or ramps). FFT samples are used
as model inputs xh and serve as training data collected by
the individual devices. The network of radars is designed to
discriminate body movements from robots and, in turn, to
detect the distance of the worker from the robot with the
purpose of identifying potential unsafe conditions [36]. The
ML model is here trained to classify C = 8 potential HR
collaborative situations characterized by different HR distances
corresponding to safe or unsafe conditions. In particular, class
c = 0 (model output ŷ = y0) corresponds to the robot and
the worker cooperating at a safe distance (distance ≥ 3.5 m),
class c = 1 (ŷ = y1) identifies the human operator as working
close-by the robot, at distance < 0.5 m. The remaining classes
are: c = 2 (0.5 ≤ distance < 1 m), c = 3 (1 ≤ distance
< 1.5 m), c = 4 (1.5 ≤ distance < 2 m), c = 5 (2 ≤
distance < 2.5 m), c = 6 (2.5 ≤ distance < 3 m), c = 7
(3 ≤ distance < 3.5 m). The FFT range measurements (i.e.,
beat signal spectrum) and the corresponding true labels in
Fig. 5.c, are collected independently by the individual devices
and stored locally. During the initial FL stage, each device
independently obtains Ek = 25 FFT range measurements.

CNN 2-NN

NN model

8
1D

co
nv

.(
16

ta
ps

)
↓

R
eL

u
↓

M
ax

Po
ol

(5
,5

)
↓

FC
(1

6
8
×
C

)
↓

So
ft

m
ax

FC
(5

1
2
×

3
2
)

↓
R

eL
u
↓

FC
(3

2
×
C

)
↓

So
ft

m
ax

Layer q = 1
w0,1 :

d1 = 16
d2 = 8

w0,1 :
d1 = 512
d2 = 32

w1,1: d1 = 8 w1,1: d1 = 32

Layer q = 2
w0,2: d1 = 168

d2 = C
w0,2: d1 = 32

d2 = C
w1,2: d1 = C w1,2: d1 = C

TABLE I
NN MODELS AND TRAINABLE PARAMETERS W (WEIGHTS AND BIASES)

FOR C = 8 CLASSES.

Data distribution is also non-IID: in other words, most of the
devices have local examples only for a (random) subset of
the C = 8 classes of the global model. However, we assume
that there are sufficient examples for each class considering
the data stored on all devices. Local datasets correspond to
the 1% of the full training database. Mini-batches for local
gradients have size equal to B = 5, training passes thus
consist of Ek/B = 5 mini-batches, for fast model update.
On the contrary, validation data consists of E = 16.000 range
measurements collected inside the industrial plant.

Unlike the previous section, we now choose a ML global
model characterized by a NN with Q = 2 trainable layers. In
particular, two networks are considered with hyper-parameters
and corresponding dimensions for weights and biases W =[
wT

0,1,w1,1,w
T
0,2,w1,2

]
that are detailed in Table I. The first

convolutional NN model (CNN) consists of a 1D convolutional
layer (8 filters with 16 taps) followed by max-pooling (non
trainable, size 5 and stride 5) and a fully connected (FC) layer
of dimension 168 × C. The second model (2NN) replaces
the convolutional layer with an FC layer of 32 hidden nodes
(dimension 512× 32) followed by a ReLu layer and a second

10

Fig. 6. From left to right: a) FL for CNN model with K = 30, b) K = 80 devices and c) 2NN model with K = 80 devices. The network is characterized
by |Nk| = 2 (solid lines) and |Nk| = 4 (dotted lines) neighbors per node. Comparative analysis of CFA, CFA-GE, FA (red lines), and centralized ML i.e.
learning w/o federation (dashed lines). CNN and 2NN parameters are described in Table I.

FC layer of dimension 32 × C. The examples are useful to
assess the convergence properties of the proposed distributed
strategies for different layer types, dimensions and number of
trainable parameters. As before, we further assume that, during
the initial stage, each device has knowledge of the ML global
model structure (see layers and dimensions in Table I). At
each new communication round, model parameters for each
layer are multiplexed and propagated simultaneously by using
a Time Division Multiple Access (TDMA) scheme [14].

FL has been simulated on a virtual environment but using
real data from the plant. This virtual environment creates an
arbitrary number of virtual devices, each configured to process
an assigned training dataset and exchanging parameters Θt,k

that are saved in real-time on temporary cache files. Files
may be saved on RAM disks to speed up the simulation
time. The software is written in Python and uses TensorFlow
and multiprocessing modules: simplified configurations for
testing both CFA and CFA-GE setups are also provided in the
repository [46]. The code script examples are available as open
source and show the application of CFA and CFA-GE for dif-
ferent NN models. Hyper-parameters such as learning rates for
weights αk,i, gradients µtβk,i, number of neighbors Nk and
% in (17) are fully configurable. The data-sets obtained in the
scenario of Fig. 5.b are also available in the same repository.
Finally, examples have been provided for implementation and
analysis of execution time on low power devices (Sect. V-C).
The current optimization toolkit does not simulate, or account
for, packet losses during communication: this is considered as
negligible for short-range connections. However, the network
and connectivity can be time-varying and arbitrarily defined.

B. Gradient exchange optimization for NN

In what follows, FL is verified by varying the number of
devices K = 30÷80 and number of neighbors

∣∣Nk

∣∣ = 2÷10
to test different D2D connectivity layouts. In Figure 6, we
validate the consensus based FL tool, for both CNN and 2NN
models, over networks with increasing number of devices from

Configuration (1) Configuration (2) Configuration (3)
K < 15
|Nk̄| ≤ 6

K ∈ [15, 50]
|Nk̄| ∈ [2, 6]

K > 50
|Nk̄| = 2

CFA
εt = 1
µt = 0.025
αk,i in (10)

εt = 0.5
µt = 0.025
αk,i in (10)

εt = 0.5
µt = 0.025
αk,i in (10)

CFA-GE
µtβk,i ≤ 0.15
% = 0.99
(MEWMA)

µtβk,i ∈ [.1, .15]
% = 0.95÷ 0.99
(MEWMA)

µtβk,i ≤ 0.1
% = 0.9÷ 0.95
(MEWMA)

TABLE II
OPTIMIZED HYPER-PARAMETERS FOR CFA AND CFA-GE.

K = 30 to K = 80. To simplify the analysis of different
connectivity scenarios, the network is simulated as k-regular
(i.e., all network devices have the same number of neighbors,
or degree) while we verify realistic topologies characterized
by |Nk̄| = 2, 4, 6, 10 neighbors per node. First, in Fig. 6, we
compare decentralized CFA and CFA-GE with FA and conven-
tional centralized ML without federation in (5). The chosen
optimization hyper-parameters are summarized in Table II. For
all FL cases (CFA, CFA-GE and FA), we plot the validation
loss vs. communication rounds (i.e., epochs) averaged over
all K devices. For centralized ML (dashed lines), validation
loss is analyzed over epochs now running inside the server.
The CFA plots (circle markers) approach slowly the curve
corresponding to FA and centralized ML, while performance
improves in dense networks (dotted lines). CFA-GE curves
(solid and dotted lines without markers) are comparable with
FA, and converge after 50−60 communication rounds. Use of
|Nk̄| = 2 neighbors (solid lines) is sufficient to approach FA
performances. Increasing the number of neighbors to |Nk̄| = 4
(dotted lines) makes the validation loss comparable with the
centralized ML without federation. Running local SGD on
received gradients as in eq. (19) causes some fluctuations of
the validation loss as approaching convergence. Fluctuations
are due to the (large) step size µtβk,i used to combine the
gradients every communication round: learning rate adaptation
techniques [10] can be applied for fine tuning. Considering the

11

Fig. 7. From top to bottom: validation loss for varying rates (µtβk,i) for
K = 80 devices and k-regular networks with varying connectivity, ranging
from a) |Nk̄| = 2, b) |Nk̄| = 6 up to c) |Nk̄| = 10.

2NN model, validation loss is larger for all cases as the result
of the larger number of model parameters to train, compared
with CNN. CFA-GE is still comparable with FA mostly after
70 rounds and converges towards centralized ML after 110
rounds. In all cases, |Nk̄| = 2 neighbors are sufficient to
approach FA results. More neighbors provide performance
improvements mostly in small networks (K = 30 devices),
while it is still useful to match centralized ML performances.

In Fig. 7, we consider the CFA-GE method and analyze
more deeply the effect of the hyper-parameter choice on
convergence, for K = 80 devices and varying network degrees
|Nk̄|. The first case (|Nk̄| = 2) is representative of a multihop
wireless network; networks with larger degrees (|Nk̄| = 6,
|Nk̄| = 10) are useful to verify the performance of FL
over denser networks. Line plots with bars in Fig. 7 are

used to graphically represent the variability of the validation
loss observed by the devices. We analyze the learning rate
(µtβk,i) used to combine the gradients received from the
neighbors in (19). Other hyper-parameters are selected as in
Table II. As expected, increasing the network degree helps
convergence and makes the validation loss to decrease faster
since less communication rounds are required. However, while
for |Nk̄| = 2 degree networks the learning rates µtβk,i can
be chosen arbitrarily in the range µtβk,i = 0.1÷ 0.2 without
affecting performance, denser networks, i.e., with large degree
|Nk̄| = 10, require the optimization of the learning rate:
smaller rates µtβk,i ≤ 0.1 improve convergence for |Nk̄| = 6
and |Nk̄| = 10.

In Table III, we analyze the latency of the FL process
that is measured here in terms of number of communication
rounds. CFA-GE is considered in detail, while performance
of CFA can be inferred from Fig. 6. The Table III reports
the number (t) of communication rounds (or epochs) that are
required to achieve a target validation loss for all devices, such
that L(val)

t,k ≤ 0.5, ∀k. For the considered case, the chosen
validation loss of 0.5 corresponds to a (global) accuracy of
γG = 0.9. Focusing on CNN layers, a network with |Nk̄| = 2
neighbors per device requires a max of 21 communication
rounds (and a minimum of 9) to achieve a target loss of
L

(val)
t,k ≤ 0.5. This is in line with the theoretical bound [24]

log [1/ (1− γG)] /γL = 15 for local accuracy γL ' 0.2
(obtained by isolated training). Considering FA (not shown
in the Table), the number of required rounds ranges from 7 to
16, and it is again comparable with decentralized optimization.
Increasing the number of neighbors to |Nk̄| = 6, the required
communication rounds reduce to 18 and to 14 for |Nk̄| = 10.
For 2NN layers, the required number of epochs increases
due to the smaller local accuracy γL ' 0.1 as well as the
larger number of parameters to be trained for each NN layer.
Finally, for the proposed setup, we noticed that performance
improves by keeping the learning rate µtβk,i for the hidden
layer parameters

[
wT

0,1,w1,1

]
, (q = 1) slightly larger than the

rate for the output layer parameters
[
wT

0,2,w1,2

]
, (q = 2). This

is particularly evident when convolutional layers are used.

C. Communication and computational cost assessment

The CFA-GE method achieves the performance of the
centralized ML without federation, in exchange for a more
intensive use of D2D wireless links and local computations,
that scale in both cases with the number of neighbors |Nk̄|.
Based on the the analysis in Sect. III-D, in Table IV we com-
pare the communication overhead and computational cost for
varying number of neighbors |Nk|, considering FA, CFA and
CFA-GE methods. In particular, the communication overhead
quantifies the number of bytes that need to be transmitted over-
the-air by each device every communication/consensus round.
The computational cost is measured in terms of average local
execution time per communication round and device.

The communication overhead of FA and CFA is 2.98
Kbyte/round/device for CNN and 33.36 Kbyte/round/device

12

Layers CNN (L(val)
t,k ≤ 0.5) 2NN (L(val)

t,k ≤ 0.5)

|Nk̄| (W) µtβk,i
Epochs (t)

µtβk,i
Epochs (t)

(min | max) (min | max)

2

q = 1 0.2
9 | 21 0.05

11 | 51
q = 2 0.15 0.1
q = 1 0.15

10 | 26
0.1

12 | 23
q = 2 0.2 0.05

6

q = 1 0.15
8 | 18 0.025

17 | 28
q = 2 0.1 0.05
q = 1 0.1

12 | 23
0.05

11 | 19
q = 2 0.15 0.025

10

q = 1 0.05
7 | 14 0.025

15 | 23
q = 2 0.025 0.025
q = 1 0.025

11 | 17 0.05
10 | 17

q = 2 0.05 0.025

TABLE III
COMMUNICATION ROUNDS (EPOCHS t) FOR TARGET VALIDATION LOSS:
L

(val)
t,k ≤ 0.5, ∀k. MIN. AND MAX. EPOCHS OVER K = 80 DEVICES FOR
CNN AND 2NN. OPTIMIZED PARAMETERS (BOLD) ARE SHOWN, TOO.

for 2NN. Overhead corresponds in both cases to the model
W size: this is evaluated according to the model parameters
highlighted in Table I and assuming 16 bit/parameter quantiza-
tion. CFA-GE overhead is larger as it scales linearly with |Nk|,
therefore it can be quantified as 2.98·|Nk| Kbyte/round/device
for CNN and 33.36 · |Nk| Kbyte/round/device for 2NN. Notice
that bandwidth-limited communication systems, e.g., based on
IEEE 802.15.4, 6LoWPAN and related evolutions [14]-[34],
are characterized by small physical frame payloads, typically
below 1 Kbyte/frame. Therefore, sending FA, CFA or CFA-
GE parameters on each round might require the aggregation
of consecutive physical frames, or multiple network layer
transactions. For comparison with centralized ML, FFT train-
ing measurements collected individually by devices have size
within the range 1 ÷ 4 Mbyte, assuming 32 bit quantization
for in-phase (I) and quadrature (Q) components.

Local execution time considers here the ML stages only,
while data pre-processing and acquisition steps are not in-
cluded, being negligible compared to the learning steps. The
execution time shown in Table IV is measured using the timeit
Python module, on a device equipped with a 1.5 GHz quad
core ARM Cortex-A72 processor with 4 GB internal RAM6.
Focusing on a realistic IIoT environment, the device has thus
limited computational capabilities, compared with the server.
Execution time depends in general on the specific CPU or
Tensor Processing Unit (TPU) performances; nevertheless, the
analysis of the results in Table IV is useful to highlight the
scaling performance of the proposed methods compared to
the plain FA algorithm. Considering FA, the execution time
on the device is ruled by local SGD rounds: it is 140ms
and 145ms for CNN and 2NN, respectively. Notice that FA
needs the server for aggregation, while such additional cost is
not considered here. Compared with FA, CFA adds a model
aggregation stage (8) for each NN layer that takes 0.5 ms
on average per neighbor. Finally, CFA-GE adds a cumulative
time of 90 ms for CNN and 94 ms for 2NN on average per

6Typical commercial low-power single-board computer (Raspberry Pi 4
Model B): smaller execution times are expected when running on dedicated
TPU processors

Comm. overhead Execution time (avg.)
[Kbyte/round/device] [m.sec./round/device]

|Nk̄| CNN 2NN CNN 2NN

2
FA 2.98 33.36 140ms 145ms
CFA 2.98 33.36 141ms 146ms
CFA-GE 5.96 66.72 321ms 334ms

6
FA 2.98 33.36 140ms 145ms
CFA 2.98 33.36 142ms 147ms
CFA-GE 17.88 200.16 684ms 711ms

10
FA 2.98 33.36 140ms 145ms
CFA 2.98 33.36 149ms 153ms
CFA-GE 29.8 333.7 984ms. ∼ 1sec.

TABLE IV
COMMUNICATION OVERHEAD [KBYTE/ROUND/DEVICE] AND

COMPUTATIONAL COST - AVERAGE EXECUTION TIME
[M.SEC./ROUND/DEVICE] MEASURED ON THE DEVICE.

neighbor. This is needed for the computation of one additional
gradient, the MEWMA update (17), and one SGD round (19)
per neighbor.

Considering both overhead and local execution time, CFA-
GE cost per round is higher compared with CFA and FA
and scales almost linearly with the number of neighbors
|Nk̄|. CFA total cost is instead comparable with FA when
|Nk̄| < 10. However, it is worth to notice that, as shown by the
numerical results in Sect. V-B, CFA-GE only needs |Nk̄| = 2
neighbors for convergence and even with such a low degree
of cooperation it reduces the number of rounds by almost one
order of magnitude (Fig. 6) compared to CFA. Using more
than |Nk̄| = 2 cooperating neighbors for CFA-GE provides
only marginal improvements and it is thus not recommended.
Having said that, we can conclude that CFA-GE is promising
as an effective replacement for FA and centralized ML when
it is critical to limit the number of communication rounds,
or in case frequent learning updates are needed. CFA keeps
complexity and overhead comparable with FA in exchange for
more rounds. It is thus suitable for non-critical learning tasks
and it can support bandwidth-limited D2D communication
systems characterized by small frame payloads.

VI. CONCLUSIONS AND OPEN PROBLEMS

The paper addressed a new family of FL methods that
leverage the mutual cooperation of devices in distributed wire-
less IoT networks without relying on the support of a central
coordinator. The adaptation of federated averaging, namely the
CFA method, was first discussed to exploit distributed consen-
sus paradigms for FL. Next, to improve convergence speed,
we proposed a new algorithm based on iterative exchange
of model updates and gradients. The CFA-GE algorithm was
optimized for two-stage gradient negotiations so that it can be
tailored to arbitrarily large scale networks.

The proposed distributed learning approach was validated
on an IIoT scenario where a NN model was distributedly
trained to solve the problem of passive body detection inside
a human-robot collaborative workspace. CFA-GE was shown
to achieve the performance of server-side (or centralized)
federated optimization. Decentralized optimization is fully
server-less with respect to NN model training as intelligence

13

is pushed down into the IoT devices. This is particularly
effective when direct communication with the infrastructure
is reserved for critical tasks (e.g., to control the robot or
to perform safety tasks). Motivated by the growing range of
ML applications that will be deployed in 5G and beyond
wireless networks, FL via consensus emerges in this paper as
a promising framework for flexible model optimization over
networks characterized by decentralized connectivity patterns
as in massive IoT implementations.

Despite the promising features, the proposed consensus
based approach is giving rise to new challenges, which need
to be taken into account during the system deployment. For
example, the paper considered a simple enough NN model
for optimization running on IoT devices with limited compu-
tation capabilities. However, training of deeper networks on
constrained devices is expected to become the mainstream in
the near future [48]. Application of consensus based feder-
ated optimization to deeper networks might require a more
efficient use of the limited bandwidth, including quantization,
compression or ad-hoc channel encoding [47]. As revealed
in the considered case study, tweaking of the model hyper-
parameters [16] as well as optimizing the learning rates for
each NN model layer separately are also viable solutions to
limit the number of communication rounds. Finally, although
the paper addressed a classification task as application of fed-
erated optimization, both CFA and CFA-GE can be generalized
to perform a wider range of computations.

APPENDIX

Appendix A: Comparing CFA and CFA-GE

Combining (13) and (14), we obtain the update equation for
CFA-GE

Wt+1,k = ψt,k − µt

∑
i∈Nk̄

βt,i∇Lt,i

(
ψt,k

)
︸ ︷︷ ︸

−

ψ̃t,k

−µtβt,k

[
∇Lt,k

(
ψ̃t,k

)] (22)

with ψt,k in (8). This is comparable with the CFA
approach in (9). Unlike CFA, gradient exchange terms∑

i∈Nk̄
βt,i∇Lt,i

(
ψt,k

)
allow to incorporate the influence

of training data collected by the neighborhood of device k
through the gradient terms Lt,i

(
ψt,k

)
. Computation of ψ̃t,k

(13) thus corresponds to an initial gradient descent round using
the training data from the neighborhood, while subsequent
rounds (22) are performed using SGD over local data mini-
batches.

Appendix B: Application to SGD with momentum

SGD is considered throughout the paper as a popular
optimization strategy; however it shows slow convergence
properties in some ML problems [10]. Recently, the method
of momentum inspired several algorithms (such as RMSProp

and Adam [41]) optimized for accelerated learning. Consid-
ering that in federated optimization any improvement in the
convergence speed is beneficial in terms of bandwidth usage
and latency, we address the necessary adaptations of CFA-GE
strategy to leverage momentum information. With respect to
SGD, momentum addresses the problem of imperfect estima-
tion of the stochastic gradients as well as the conditioning of
the Hessian matrix [32]. Poor estimation of gradients is even
more critical when considering distributed learning setups.
Compared with SGD, the use of momentum modifies the local
update rule (9),(14) as{

Wt+1,k = ψt,k + νt+1,k

νt+1,k = %νt,k − µt∇Lt,k(ψt,k)
(23)

where both current and past gradients contribute to the local
model update (for device k) as multiplied by an exponentially
decaying function ruled by hyper-parameter % ∈ [0, 1). νt,k is
the momentum, or velocity, of the gradient descent particle at
round t, that is stored by device k.

Momentum based techniques can be used seamlessly com-
bined with CFA by simply replacing (9) with (23) as gradient
sharing is not permitted. Considering that in CFA-GE local
gradients are exchanged among neighbors, some necessary
adaptations are required to leverage momentum. The received
gradients, i.e. at epoch t−1, are now used for local momentum
update as

νt,k = %νt−1,k − µt

∑
i∈Nk̄

βk,iPΘ

[
∇Lt−1,i

]
. (24)

We then replace (19) with ψ̃t,k = ψt,k + νt,k and (14)
with (23). The use of the Nesterov momentum [32] policy
requires minor adaptations: the devices should now exchange
the parameters Θt,k :=

[
ψt,k + %νt−1,k,∇Lt,k

]
. These are:

the local model ψt,k+%νt−1,k after applying the velocity term
(24) and the gradients ∇Lt,k :=

{
∇Lt,k(ψt−1,i),∀i ∈ Nk̄

}
described as

∇Lt,k(ψt−1,i) = %∇Lt,k(ψt−1,i + %νt−1,i)+

+(1− %)∇Lt−1,k,
(25)

that replace the terms in eq. (17).

Appendix C: Description of Python scripts and datasets

The section describes the database that contains the range
measurements obtained from FMCW THz radars inside the
Human-Robot (HR) workspace. It also gives examples about
how to use the sample Python code that implements the fed-
erated learning stages via consensus. The database is located
in the folder dati−radar−05− 07− 2019 and can be easily
imported through Python:

i m p o r t s c i p y . i o as s i o
db = s i o . l oadma t (’ d a t i _ r a d a r _ 0 5 −07−2019
/ d a t a _ b a s e _ a l l _ s e q u e n c e s _ r a n d o m . mat ’)

14

The database contains 5 files:
i) Data_test_2.mat has dimension 16000 x 512. Contains
16000 FFT range measurements (512-point FFT of beat signal
after DC removal) used for test. The corresponding labels are
in label_test_2.mat

x _ v a l = db (’ D a t a _ t e s t _ 2 ’)
x _ v a l _ l = db (’ l a b e l _ t e s t _ 2 ’)

ii) Data_train_2.mat has dimension 16000 x 512. Contains
16000 FFT range measurements (512-point FFT of beat signal
after DC removal) used for training. The corresponding labels
are in lable_train_2.mat

x _ t = db (’ D a t a _ t r a i n _ 2 ’)
x _ l = db (’ l a b e l _ t r a i n _ 2 ’)

iii) label_test_2.mat with dimension 16000 x 1, contains the
true labels for test data (Data_test_2.mat), namely classes (true
labels) correspond to integers from 0 to 7. Class 0: human
worker at safe distance >3.5m from the radar (safe distance)
Class 1: human worker at distance (critical) <0.5m from
the corresponding radar Class 2: human worker at distance
(critical) 0.5m - 1m from the corresponding radar Class 3:
human worker at distance (critical) 1m - 1.5m from the
corresponding radar Class 4: human worker at distance (safe)
1.5m - 2m from the corresponding radar Class 5: human
worker at distance (safe) 2m - 2.5m from the corresponding
radar Class 6: human worker at distance (safe) 2.5m - 3m from
the corresponding radar Class 7: human worker at distance
(safe) 3m - 3.5m from the corresponding radar.
iv) label_train_2.mat with dimension 16000 x 1, contains the
true labels for train data (Data_train_2.mat), namely classes
(true labels) correspond to integers from 0 to 7. See item (iii)
for class descriptions.
v) permut.mat (1 x 16000) contains the chosen random per-
mutation for data partition among nodes/device and federated
learnig simulation (see python code)

Python code

Usage example for federated_sample_XXX_YYY.py.
• XXX refers to the ML model. Available options: CNN,

2NN
• YYY refers to the consensus-based federated learning

method. Available options: CFA, CFA-GE.

Run

python federated_sample_XXX_YYY.py -h

for help. CFA and CFA-GE are described in Sect. III.A, and
Sect. III.B, respectively. The code implements the two-stage
implementation of CFA-GE (Sect. III.C).

For CNN network and CFA-GE use:
federated_sample_CNN_CFA-GE.py [-h] [-l1 L1] [-l2
L2] [-mu MU] [-eps EPS] [-K K] [-N N] [-T T] [-ro RO]

For 2-NN network and CFA-GE use:
federated_sample_2NN_CFA-GE.py [-h] [-l1 L1] [-l2
L2] [-mu MU] [-eps EPS] [-K K] [-N N] [-T T] [-ro RO]

Arguments:
-l1: l1 sets the learning rate (gradient exchange) for convolu-
tional layer
-l2: l2 sets the learning rate (gradient exchange) for FC layer
-mu: mu sets the learning rate for local SGD
-eps: eps sets the mixing parameters for model averaging
(CFA)
-K: K sets the number of network devices
-N: N sets the number of neighbors per device
-T T sets the number of training epochs
-ro ro sets the hyperparameter for MEWMA

Optional arguments:
-h, --help show this help message and exit.

For testing CFA performance with CNN network, please use:
federated_sample_CNN_CFA.py [-h] [-mu MU] [-eps EPS] [-
K K] [-N N] [-T T]

Similarly, for 2-NN network, please use:
federated_sample_2NN_CFA.py [-h] [-mu MU] [-eps EPS] [-
K K] [-N N] [-T T]

Optional arguments:
-h, –help show this help message and exit
-mu MU sets the learning rate for local SGD
-eps EPS sets the mixing parameters for model averaging
(CFA)
-K K sets the number of network devices
-N N sets the number of neighbors per device
-T T sets the number of training epochs

Example 1:

py thon federated_sample_CNN_CFA−GE . py
−l 1 0 .025 −l 2 0 . 0 2 −K 40 −N 2
−T 40 −ro 0 . 9 9

Use convolutional layers followed by a FC layer (see Table I,
CNN network). Sets gradient learning rate for hidden layer to
0.025, for output layer to 0.02, K=40 devices, N=2 neighbors
per device, MEWMA parameter 0.99 (see Sect. III).

Example 2:

py thon federated_sample_2NN_CFA−GE . py
−l 1 0 . 0 1 −l 2 0 .015 −N 2 −T 40 −ro 0 . 9 9

Use FC layers only (see Table I, 2-NN network). Sets gradient
learning rate for hidden layer to 0.01, for output layer to 0.015,
K=80 devices (default), N=2 neighbors per device, MEWMA
parameter 0.99.

15

Python package description

Python package can be downloaded also from
https://test.pypi.org/project/consensus-stefano/0.3/.
To initialize CFA use the constructor:
consensus_p = CFA_process(federated, tot_devices, device_id,
neighbors_number).
Use similar constructor for CFA-GE:
consensus_p = CFA-ge_process(federated, tot_devices, de-
vice_id, neighbors_number, ro).

Example:

c o n s e n s u s _ p = CFA_process (True , 80 , 2 , 2)

Initialize CFA process on device 2 with 2 neighbors and for
a network of 80 devices.

To apply/update federated weights use: consen-
sus_p.getFederatedWeight(...)

To enable/disable consensus (dynamically) consen-
sus_p.disable_consensus(... True/False ...)

Changing ML network parameters

ML network parameters are defined in the Python scripts fed-
erated_sample_XXX_YYY.py. In particular considering CFA-
GE script, the CNN network is defined at lines 99-109 by

C o n s t r u c t model
Layer #1 CNN 1d ,
Layer #2 FC
hidden0 = conv1d (x , W_ext_l1 , b _ e x t _ l 1)
h idden01 = t f . l a y e r s . max_pool ing1d (
hidden0 , p o o l _ s i z e = s t r i d e ,
s t r i d e s = s t r i d e , padd ing = ’SAME’)
f c01 = t f . r e s h a p e (hidden01 ,
[−1 , m u l t i p ∗number])
p r ed = t f . nn . so f tmax (
t f . matmul (fc01 , W_ext_l2) + b _ e x t _ l 2)

with parameters defined in lines 39-45. Modify these lines to
change the CNN network, namely changing filter and stride
sizes, or adding further layers.

REFERENCES

[1] C. Zhang, P. Patras. H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A survey,” IEEE Comm. Surveys and Tu-
torials, vol. 21, no. 3, pp. 2224-2287, third-quarter 2019. doi:
10.1109/COMST.2019.2904897.

[2] W. G. Hatcher and W. Yu, “A Survey of Deep Learning: Platforms,
Applications and Emerging Research Trends,” IEEE Access, vol. 6, pp.
24411-24432, 2018.

[3] S. Savazzi, S. Sigg, F. Vicentini, S. Kianoush and R. Findling, “On the
Use of Stray Wireless Signals for Sensing: A Look Beyond 5G for the
Next Generation of Industry,” Computer, vol. 52, no. 7, pp. 25-36, July
2019.

[4] K. M. Alam and A. El Saddik, “C2PS: A Digital Twin Architecture
Reference Model for the Cloud-Based Cyber-Physical Systems,” IEEE
Access, vol. 5, pp. 2050-2062, 2017.

[5] Samarakoon, M. Bennis, W. Saad, M. Debbah, “Federated Learning for
Ultra-Reliable Low-Latency V2V Communication,” Proc. of the IEEE
Globecom 2018.

[6] M. Bennis, M. Debbah and H. V. Poor, “Ultrareliable and Low-Latency
Wireless Communication: Tail, Risk, and Scale,” Proc. of the IEEE, vol.
106, no. 10, pp. 1834-1853, Oct. 2018.

[7] KonečnÃœ J., et al., “Federated optimization: Distributed machine
learning for on-device intelligence,” CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/ 1610.02527.

[8] S. Wang et al., “Adaptive Federated Learning in Resource Constrained
Edge Computing Systems,” IEEE Journal on Sel. Areas in Comm., vol.
37, no. 6, pp. 1205-1221, June 2019.

[9] KonečnÃœ J., et al. “Federated learning: Strategies for improv-
ing communication efficiency,” CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/ 1610.05492.

[10] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient
Descent,” Proceedings of COMPSTAT, Physica-Verlag HD, 2010.

[11] G. Aloi, et al., “The SENSE-ME platform: Infrastructure-less smart-
phone connectivity and decentralized sensing for emergency manage-
ment,” Pervasive and Mobile Comput., vol. 42, 2017, Pages 187-208,
ISSN 1574-1192.

[12] S. Kianoush, M. Raja, S. Savazzi and S. Sigg, “A cloud-IoT platform for
passive radio sensing: Challenges and application case studies,” IEEE
Internet of Things Journal, vol. 5, no. 5, pp. 3624-3636, Oct. 2018.

[13] M. Brambilla, M. Nicoli, G. Soatti, F. Deflorio, “Augmenting Vehicle
Localization by Cooperative Sensing of the Driving Environment: In-
sight on Data Association in Urban Traffic Scenarios,” IEEE Transac-
tions on Intelligent Transportation Systems, 2019.

[14] L. Ascorti, et al., “A Wireless Cloud Network Platform for Industrial
Process Automation: Critical Data Publishing and Distributed Sensing,”
IEEE Trans. on Instrumentation and Measurement, vol. 66, no. 4, pp.
592-603, April 2017.

[15] McMahan, et al. “Communication-efficient learning of deep networks
from decentralized data,” Proc. of the 20th Int. Conf. on Artificial Intel.
and Stat., pp. 1273–1282, vol. 54, 2017.

[16] E. Jeong, et al. “Communication-Efficient On-Device Machine Learning:
Federated Distillation and Augmentation under Non-IID Private Data,”
NIPS Workshop, Montreal, Canada, 2018.

[17] M. Blot, et al., “Gossip training for deep learning,” 30th Conference on
Neural Information Processing Systems (NIPS), Barcelona, Spain, 2016.
[Online]. Available: https://arxiv.org/abs/1611.09726.

[18] J. A Daily, et al. “Gossipgrad: Scalable deep learning using gossip com-
munication based asynchronous gradient descent,” [Online]. Available:
https://arxiv.org/abs/1803.05880.

[19] A. Guha, S. Siddiqui, S. Polsterl, N. Navab, and C. Wachinger,
“BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated
Learning,” [Online]. Available: https://arxiv.org/abs/1905.06731.

[20] C. Hu, J. Jiang, Z. Wang, “Decentralized Federated Learning: A Seg-
mented Gossip Approach,” 1st International Workshop on Federated
Machine Learning for User Privacy and Data Confidentiality (FML’19)
[Online]. Available: https://arxiv.org/abs/1908.07782.

[21] A. Lalitha, S. Shekhar, T. Javidi, F. Koushanfar, “Fully decentralized
federated learning,” 3rd Workshop on Bayesian Deep, NIPS Workshop,
2018.

[22] A. Lalitha, O. C. Kilinc, T. Javidi, F. Koushanfar, “Peer-
to-peer Federated Learning on Graphs,” [Online]. Available:
https://arxiv.org/abs/1901.11173.

[23] G. Soatti, M. Nicoli, S. Savazzi and U. Spagnolini, “Consensus-Based
Algorithms for Distributed Network-State Estimation and Localization,”
IEEE Trans. on Signal and Information Processing over Networks, vol.
3, no. 2, pp. 430-444, June 2017.

[24] Ma C., et al., “Distributed optimization with arbitrary local solvers,”
Optimization Methods and Software, vol. 32, no. 4, pp. 813-843, 2017.

[25] Y. Zhang, X. Lin, “DiSCO: Distributed optimization for self-concordant
empirical loss,” Proc. of ICML, pp. 362-370, 2015.

[26] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE Journal on Selected Areas in Commu-
nications, vol. 23, no. 4, pp. 798-808, April 2005.

[27] I. D. Schizas et al., Consensus in Ad Hoc WSNs with Noisy Links-
Part I: Distributed Estimation of Deterministic Signals, IEEE Trans. on
Signal Proc., vol. 56, no. 1, pp. 350-364, 2008.

16

[28] R. Olfati-Saber, A. Fax, R. M. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 98, no.
7, pp. 1354-1355, 2010.

[29] F. S. Cattivelli et al., “Analysis of Spatial and Incremental LMS
Processing for Distributed Estimation,” IEEE Trans. on Signal Proc.,
vol. 59, no. 4, pp. 1465-1480, 2011.

[30] J. Chen and A. H. Sayed, “Diffusion Adaptation Strategies for Dis-
tributed Optimization and Learning Over Networks,” IEEE Trans. on
Signal Proc., vol. 60, no. 8, pp. 4289-4305, Aug. 2012.

[31] A. H. Sayed, et al., “Diffusion Strategies for Adaptation and Learning
over Networks: An Examination of Distributed Strategies and Network
Behavior,” IEEE Signal Proc. Mag., vol. 30, no. 3, 2013.

[32] I. Sutskever, J. Martens, G. Dahl and G. Hinton, “On the importance of
initialization and momentum in deep learning,” Proc. of the 30 th Int.
Conf. on Machine Learning, Atlanta, Georgia, USA, 2013.

[33] M. Abadi, et al. “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015. Software available from tensorflow.org.

[34] M. R. Palattella, et al., “Internet of Things in the 5G era: enablers,
architecture, and business models,” IEEE Journal on Sel. Areas in
Comm., vol. 34, no. 3, Mar. 2016.

[35] S. Savazzi, V. Rampa and U. Spagnolini, “Wireless Cloud Networks
for the Factory of Things: Connectivity Modeling and Layout Design,”
IEEE Internet of Things Journal, vol. 1, no. 2, pp. 180-195, April 2014.

[36] S. Savazzi, et al. “Passive detection and discrimination of body move-
ments in the sub-THz band: a case study”, Proc. of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP’19), Brighton, UK, pp. 1597-1601, May 12-17, 2019.

[37] E. Soltanmohammadi, K. Ghavami and M. Naraghi-Pour, “A Survey
of Traffic Issues in Machine-to-Machine Communications Over LTE,”
IEEE Internet of Things Journal, vol. 3, no. 6, pp. 865-884, Dec. 2016.

[38] A. Aland and B. Raj, “Reducing communication overhead in distributed
learning by an order of magnitude (almost),” IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Brisbane,
QLD, 2015, pp. 2219-2223.

[39] M. N. Tehrani, M. Uysal and H. Yanikomeroglu, “Device-to-device
communication in 5G cellular networks: challenges, solutions, and future
directions,” IEEE Communications Magazine, vol. 52, no. 5, pp. 86-92,
May 2014.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278-2324, November 1998.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
2015. [Online]. Available: https://arxiv.org/abs/1412.6980.

[42] S. Savazzi, V. Rampa, F. Vicentini and M. Giussani, “Device-
Free Human Sensing and Localization in Collaborative Human–Robot
Workspaces: A Case Study,” IEEE Sensors Journal, vol. 16, no. 5, pp.
1253-1264, March, 2016.

[43] Z. Zhang, Z. Tian and M. Zhou, “Latern: Dynamic Continuous Hand
Gesture Recognition Using FMCW Radar Sensor,” IEEE Sensors Jour-
nal, vol. 18, no. 8, pp. 3278-3289, 15 April, 2018.

[44] B. Vandersmissen et al., “Indoor Person Identification Using a Low-
Power FMCW Radar,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 56, no. 7, pp. 3941-3952, July 2018.

[45] SiliconRadar, 120-GHz Highly Integrated IQ Transceiver with Anten-
nas on Chip in Silicon Germanium Technology, Nov. 2018. Avail-
able: https://siliconradar.com/datasheets/Datasheet_TRA_120_002_V0.8.pdf. Ac-
cessed: Aug. 26, 2019.

[46] Data Repository: “Federated Learning: example dataset
(FMCW 122GHz radars),” IEEE Dataport, 2019. [Online].
Available: http://dx.doi.org/10.21227/8yqc-1j15. Also on GitHub:
https://github.com/labRadioVision/federated. Accessed: Sept. 23, 2019.

[47] M. M. Amiri et al., “Machine learning at the wireless edge: Distributed
stochastic gradient descent over-the-air,” CoRR vol. abs/1901.00844
2019 [online] Available: http://arxiv.org/abs/1901.00844.

[48] N. D. Lane, et al., “Squeezing deep learning into mobile and embedded
devices,” Pervasive Comput., vol. 16, no. 3, pp. 82–88, 2017.

