In this paper, the problem of tuning the attitude control system of a multirotor unmanned aerial vehicle (UAV) is tackled and a data-driven approach is proposed. With respect to previous work, the data used to tune the controller gains is collected in flight during closed-loop experiments. Furthermore, the simultaneous tuning of roll and pitch attitude control loops is demonstrated, thus paving the way to MIMO data-driven attitude control design. Simulation results confirmed that a MIMO controller allows rejecting undesired coupling effects that affect the performance of a standard decoupled controller usually employed in autopilots for multirotor UAVs. Finally, the results based on experimental work carried out on a quadrotor UAV show that a good level of performance can be achieved in typical operating conditions with the proposed tuning method.
Closed-loop MIMO data-driven attitude control design for a multirotor UAV
Invernizzi D.;Panizza P.;Lovera M.
2020-01-01
Abstract
In this paper, the problem of tuning the attitude control system of a multirotor unmanned aerial vehicle (UAV) is tackled and a data-driven approach is proposed. With respect to previous work, the data used to tune the controller gains is collected in flight during closed-loop experiments. Furthermore, the simultaneous tuning of roll and pitch attitude control loops is demonstrated, thus paving the way to MIMO data-driven attitude control design. Simulation results confirmed that a MIMO controller allows rejecting undesired coupling effects that affect the performance of a standard decoupled controller usually employed in autopilots for multirotor UAVs. Finally, the results based on experimental work carried out on a quadrotor UAV show that a good level of performance can be achieved in typical operating conditions with the proposed tuning method.File | Dimensione | Formato | |
---|---|---|---|
ZANGA01-20.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
ZANGA_OA_01-20.pdf
Open Access dal 13/06/2021
Descrizione: Paper Open Access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.