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Abstract In this paper, the problem of tuning the attitude control system of a mul-
tirotor Unmanned Aerial Vehicles (UAV) is tackled and a data-driven approach is
proposed. With respect to previous work, the data used to tune the controller gains
are collected in flight during closed-loop experiments. Furthermore, the simultaneous
tuning of roll and pitch attitude control loops is demonstrated, thus paving the way to
MIMO data-driven attitude control design. Simulation results confirmed that a MIMO
controller allows rejecting undesired coupling effects that affect the performance of
a standard decoupled controller usually employed in autopilots for multirotor UAVs.
Finally, the results based on experimental work carried out on a quadrotor UAV show
that a good level of performance can be achieved in typical operating conditions with
the proposed tuning method.

Keywords UAV · Attitude control · Data-driven control

1 Introduction

Small-scale Unmanned Aerial Vehicles (UAVs), and in particular multirotor ones,
have been studied extensively in view of the great potential for a large number of ap-
plications. For most problems of practical interest, requirements in terms of pointing
and positioning performance require a careful tuning of the control laws. While non-
linear control design approaches have been considered in the literature (see, e.g., [1]

for a recent survey), for civil applications such as surveillance, mapping, video and
photography linear controllers are usually adopted. In these settings, considering also
that hover and near-hover operations are representative conditions, cascaded PID laws
are usually employed for attitude control thanks to their inherent reliability and ease
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of implementation. As far as controller tuning is concerned, model-based methods
suffer from the fact that the mathematical modelling of quadrotors is particularly
challenging due to the non-trivial characterization of the aerodynamics and of the
actuators and sensors dynamics (see [2]). For this reason data-driven tuning methods,
which have been developed in the last two decades in the control community, offer
an interesting alternative. These control design tools are especially appealing when
a priori knowledge about the plant model is limited, when an accurate modeling of
the system is too expensive or when fast deployment of the control system is an im-
portant requirement, since they allow the direct tuning of the controller parameters
from experimental input-output data. Among the data-driven methods available in
the literature, a coarse classification can be made between iterative (e.g., the Iterative
Feedback Tuning (IFT) [3]) and single-shot (non-iterative) methods (e.g., the Virtual
Reference Feedback Tuning (VRFT) [4], the Correlation-Based Tuning (CbT) [5,6]).
Recent advances on the VRFT method, which is the approach adopted in this work,
can be found e.g., in [7,8,9], while application studies are available, e.g., in [10,11].

Non-iterative methods are particularly attractive for a fast re-tuning of the con-
troller when the plant performance is reduced (e.g., components aging) and/or op-
erating conditions change (e.g., different payloads, environment). Recently ( [12]) the
VRFT algorithm has been considered to tune the attitude controller parameters of a
variable-pitch quadrotor, based on data collected in indoor experiments on a single
degree-of-freedom test-bed. The results have shown improvements in the tracking
and disturbance rejection capabilities compared to those obtained with a manual tun-
ing. Furthermore, comparable results with respect to a model-based structured H∞

synthesis ( [13]), made data-driven methods a promising tool for this kind of appli-
cations. In particular, an extension of VRFT allowing the direct tuning of a cascade
controller configuration with a single set of input-output data, following the proce-
dure outlined for the VRFT (see [14]), has been employed. The possibility of tuning
the control laws directly from flight-test data has been subsequently explored in [15],
as this, among other things, would pave the way to the design and tuning of MIMO
(Multiple Input Multiple Output) attitude controllers. Experiments for the tuning of
attitude controllers however can be executed safely only in closed-loop conditions. In
view of this, in this paper a closed-loop approach to data-driven tuning of the attitude
control laws for a multirotor UAV is presented. With respect to previous work, the
pitch and roll axes are tuned in a single experiment exploiting a MIMO controller
structure using the VRFT method proposed in [16]. Indeed, while the attitude motion
of quadrotors can be approximated by three independent equations along each axis
in near hovering conditions, a decoupled controller may yield not so satisfactory per-
formance in practice due to unavoidable inertial couplings arising from a non perfect
knowledge of principal axes frame and nonlinear effects. The achievable performance
is illustrated by means of experimental results obtained on a small-scale quadrotor.

The paper is organized as follows. The data-driven framework is presented in Sec-
tion 2. In Section 3 the considered quadrotor platform and its controller architecture
are introduced in detail. Finally, simulation and experimental results are presented
and discussed in Section 4.1 and 4.2 respectively.
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2 Data-driven control law design

2.1 VRFT with open-loop data

Consider a linear time-invariant discrete-time system P(z), where z denotes the for-
ward time-shift unit (i.e., zx(t) = x(t + 1)), a parametrized controller class C (θ) =
{C(z,θ),θ ∈ Rn}, and a given target closed-loop behaviour M(z). The control aim of
data-driven methods is the minimization of the weighted L2-norm of the mismatch
between M(z) and the actual closed-loop system:

JMR(θ) =

∥∥∥∥∥
(

P(z)C(z,θ)
1+P(z)C(z,θ)

−M(z)

)
W (z)

∥∥∥∥∥
2

2

, (1)

where W (z) is a weighting function chosen by the user. In data-driven approaches
the model-reference problem (1) is solved with limited knowledge of the system and
using only a set of available measurements dN = {u(t),y(t)}t=1,...,N , where N is the
length of the data-set and u, y are the input and output to the plant P(z), respectively.

The main idea of VRFT can be described as follows. Consider the reference signal
r(t) that would feed the system in closed-loop operation when the closed-loop model
is M(z) and the output is the measured y(t). Such a signal is called virtual reference
and is such that y(t) = M(z)r(t). A good controller (making the closed-loop as close
as possible to M(z)) is then the one that produces the input sequence of the experiment
u(t) when it is fed by the error signal e(t) = r(t)− y(t).

Formally, the cost criterion minimized by the VRFT algorithm is the following:

JN
V R(θ) =

1
N

N

∑
t=1

(uL(t)−C(z,θ)eL(t))
2 , (2)

where uL(t) and eL(t) are suitably filtered versions of u(t) and e(t). The filter L(z) is
chosen such that the cost function (2) is a local approximation of the criterion (1) in
the neighborhood of the minimum point [4].

Remark 1 Both VRFT and CbT have been extended to deal with multiple nested
loops architectures in [14,17]. Consider the cascade control scheme in Figure 1, given
two reference models Mi(z) and Mo(z), for the inner loop and the outer loop respec-
tively, and consider two families of linear proper controllers Ci(θi)= {Ci(z,θi) , θi ∈ Rn

i }
and Co(θo)= {Co(z,θo) , θo ∈ Rn

o} and the set of data DN = {u(t),yi(t),yo(t)}t=1,...,N
being u(t) the control variable, yi(t) the output of the inner loop, yo(t) the output of
the outer loop. The inner controller can be tuned by applying VRFT or CbT while for
the outer controller the approach needs to be different, as the input of the system to
control is the reference ri(t), that is not available in the dataset, since measurements
are collected during open-loop operation. Nevertheless, the reference signal ri(t) can
be derived as follows: once Ci(z,θi) is fixed, the input of the inner loop can be cal-
culated as ri(t) = ei(t)+ yi(t), where the tracking error comes from the result of the
inner design: ei(t) = C−1

i (z,θi)u(t). With such a choice, ri(t) is exactly the signal
that would feed the inner loop in closed-loop working conditions when the output
is yi(t). Then, the outer controller can be easily found by using the set of I/O data
Do

N = {ri(t),yo(t)}t=1,...,N .
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Co(z) Ci(z) P(z) P′(z)
u yiro eo ri ei yo

−−

Fig. 1: Cascade control scheme with two nested loops.

Remark 2 Since VRFT exploits a PEM (Prediction Error Method) identification pro-
cedure to tune the controller, it has to deal with the problem related to these class of
methods. In particular, suppose that the output of the plant is affected by an additive
noise ν(t) (see Figure 2)

ỹ(t) = P(z)u(t)+ν(t),

with the assumption that u(t) and ν(t) are uncorrelated. In this case the PEM proce-
dure is not adequate for this problem because the input of the controller is affected
by the noise ν(t) and this results in a biased parameter vector estimate. As described
in [4], an instrumental variable method can be employed to counteract the effect of
noise. The instrumental variable can be built in different ways and it must be cor-
related with the regression variable and uncorrelated with the noise ν(t). To satisfy
these requirements, the instrumental variable can be developed by exploiting repeated
experiments or by plant identification [4]. In some situations a second experiment with
the same input signal can not be performed. Thus, a way to build the instrumental
variable passes through the identification of the plant in order to get a model P̂(z).
The model can be exploited to build the noiseless output as:

ŷ(t) = P̂(z)u(t) (3)

and the instrumental variable is

ζ (t) = β (z)L(z)
(
M(z)−1−1

)
ŷ(t) (4)

where β (z) is defined such that C(z,θ) = β T (z)θ . This approach guarantees a con-
sistent estimate but its variance depends on the quality of the model P̂(z). Further-
more, the plant identification procedure clashes with the data-driven idea of the VRFT
method. Nevertheless the reader should notice that P̂(z) is not directly involved in the
design of the controller but it is employed only in the creation of the instrumental
variable. Once the instrumental variable is selected, it can be used to solve the prob-
lem in (2) and the optimal solution is [4]:

θ̂
IV
N =

[
N

∑
t=1

ζ (t)ϕT
L (t)

]−1 N

∑
t=1

ζ (t)uL(t). (5)

where ψL(t) = β (z)eL(t) is a regressor vector.
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Fig. 2: VRFT experiment in closed-loop operation.

2.2 VRFT with closed-loop data

If the test to collect data is performed in flight, then for safety reasons the data must
be collected in closed-loop, allowing the user to control the system also during the
experiment. Furthermore, closed-loop tests allow to perform the experiment to col-
lect the data without exploiting a test-bed and without modifying the system, thus
significantly simplifying the tuning process.

As illustrated in Figure 2, the excitation input ū is added to the output of the
controller Cd(z). Cd(z) is a stabilising controller adopted to carry out the in-flight
test. The user can act on the set-point r to control the behaviour of the system also
during the experiment.

The standard VRFT method cannot be applied to obtain a new controller ex-
ploiting the measurements dN = {u(t), ỹ(t)}t=1,...,N : specific problems arise when the
instrumental variable is constructed because u and the noise ν are correlated. Indeed,
the user cannot directly act on the input of the plant as in the standard VRFT, but it
can operate on the setpoint r and on the excitation input ū, and the input of the plant
is now affected by this action:

u(t) =
1

1+Cd(z)P(z)
ū(t)+

Cd(z)
1+Cd(z)P(z)

(r(t)−ν(t)) . (6)

For the sake of simplicity, the assumption that the user does not provide a setpoint
during the experiment can be made (r(t) = 0, ∀ t) and (6) can be rewritten as:

u(t) =
1

1+Cd(z)P(z)
ū(t)− Cd(z)

1+Cd(z)P(z)
ν(t). (7)

Using (7) to build the instrumental variable (4) leads to a biased controller parameter
vector since the instrumental variable is no longer uncorrelated with the noise ν(t).
Indeed, if one were to substitute (7) in equation (3), he would get

ŷ(t) = P̂(z)
(

1
1+Cd(z)P(z)

ū(t)− Cd(z)
1+Cd(z)P(z)

ν(t)
)
.

Then, the instrumental variable (4) would be given by

ζ (t) = β (z)L(z)
(
M(z)−1−1

)
ŷ(t)

= β (z)L(z)
(
M(z)−1−1

)
P̂(z)

(
1

1+Cd(z)P(z)
ū(t)− Cd(z)

1+Cd(z)P(z)
ν(t)

)
.
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The previous equation clearly shows the correlation between ζ (t) and ν(t). To solve
this problem a different instrumental variable must be chosen, to ensure correlation
with the regression variable and incorrelation with the noise. A detailed overview
on the choice of the instrumental variable can be found in [15]. In this work we will
employ the following instrumental variable:

ζ (t) = β (z)L(z)
(
M(z)−1−1

)
ŷCL

ū (t) (8)

where

ŷCL
ū (t) =

P̂(z)
1+Cd(z)P̂(z)

ū(t),

which is clearly uncorrelated with the noise. Note that if the instrumental variable
is built as in (8) the initial controller Cd(z) must be known. In the next Section we
will present an alternative formulation of the VRFT method which naturally extends
to MIMO systems and requires less information, notably, no plant model is needed
to built the instrumental variable and the initial controller parameters should not be
known.

2.3 Multivariable extension

The VRFT algorithm can be extended to the multivariable case, where the initial for-
mulation is the same, but an additional step is introduced. In particular, a different
instrumental variable method is employed, the extended instrumental variable (EIV),
which is easily implemented for multivariable problems [18] and does not require nei-
ther the identified model to counteract the effect of noise. In this section we follow
closely the presentation of [16], to which we refer the interested reader for further
details. Different multivariable approaches in the VRFT framework can be found
in [19,20].

The discrete MIMO LTI problem is formulated in terms of a MIMO linear time-
invariant discrete time model P(z)∈Rny×nu , a linearly parametrized controller C(z,θ)∈
Rnu×ny where u ∈ Rnu , y,r ∈ Rny . The model reference problem is then formulated
with respect to the input complementary sensitivity T (z) ∈Rny×ny , thus the reference
model is such that M(z) ∈ Rny×ny .

A convex approximation of (1) for the multivariable case, namely,

J̃MR(θ) = ‖M(z)− (I−M(z))P(z)β T (z)θ‖2
2, (9)

can be obtained by making the following assumptions:

1. the desired sensitivity function S(z) = I−M(z) is close to the actual closed-loop
sensitivity function for θ = θ̂ (the minimizer of (1) ) , i.e., (I+P(z)C(z, θ̂))−1 ≈
I−M(z);

2. the controller family C(z,θ) can be linearly parametrized with the vectors of pa-
rameters θ ∈ Rn, such that C (θ) =

{
C(z,θ) = β T (z)θ

}
.
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By comparing the frequency-wise counterpart of the virtual reference cost function,
defined here as

JN
V R(θ) =

1
N

N

∑
t=1

(uLu(t)−C(z,θ)eLe(t))
2 , (10)

where uLu(t) = Luu(t), eLe = Le(M−1− I)PLyu(t), and the convex approximation of
the model reference one in Equation (9), the filters which make them equivalent can
be defined as:

Lu(z) = M(z)Φ−1/2
uu (z), Le =C−1(z,θ)M(z), Ly =C(z,θ)Φ−1/2

uu (z), (11)

where Φuu is the power spectral density of the input u. These filters however require
the knowledge of the controller, turning the minimization of (10) into a nonlinear
optimization problem. Instead, by choosing suboptimal filters1 as:

Lu(z) = Le(z) = L(z) = M(z), Ly(z) = I, (12)

the cost function (10) becomes linear in the parameter vector, and the frequency-wise
version of the asymptotic value of JN

V R can be read as the frequency-wise convex
approximation of

J̄MR(θ) = ‖M(z)− (I +C(z,θ)P(z))−1C(z,θ)P(z)Φ1/2
uu ‖2

2. (13)

Remark 3 The main difference between the suboptimal filters and the optimal ones
is that C(z,θ) is chosen in (13) such as to make the input complementary sensitivity
function as close as possible to M(z). Nonetheless, good matching results will be
observed in practice (see Section 4.2) even if the desired behavior is formulated via
output complementary sensitivity function, as noted also in [16]. An asymptotically
exact solution which guarantees that the desired closed-loop dynamics is matched
when the number of data tends to infinity can be found in [21].

Without loss of generality, a MIMO FIR structure with integral action will be
used. The n-th order control law is then defined as:

u(t) = u(t−1)+
n

∑
i=0

Bie(t− i) (14)

= u(t−1)+B0e(t)+B1e(t−1)+ · · ·+Bne(t−n), (15)

where Bi ∈ Rnu×ny , i = 1, . . . ,n. The linearly parametrized PID class can be obtained
by exploiting the properties of the Kronecker product, denoted with ⊗, as follows:

u(t) = u(t−1)+
n

∑
i=0

Bie(t− i) = u(t−1)+ϕ
T (t)θ (16)

n

∑
i=0

Bie(t− i) =
[
eT (t)⊗ I, · · · ,eT (t−n)⊗ I

]
vec
(
[B0, · · · ,Bn]

)
= ϕ

T (t)θ ,

(17)

1It is noted that the filters for the MIMO extension differ from the ones derived for the SISO problem,
as obtained in [4]. This is due to Assumption 1 being used at the beginning of the derivation, obtaining the
filter for the convex model reference problem instead of deriving the optimal filter first for the original
model reference problem. The filters are optimal in case of SISO systems, see Section 3 of [16].
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where:

θ = vec
(
[B0, · · ·Bn]

)
(18)

ϕ(t) =
[
eT (t)⊗ I, · · · ,eT (t−n)⊗ I

]T
. (19)

The definition of the regressor ϕ and the parameter vector θ ∈ Rnθ ,nθ = n×nu×ny
in Equation (16) can be further manipulated obtaining:

u(t) =
1

1− z−1 ϕ
T (t)θ =

z
z−1

ϕ
T (t)θ = ϕ

T
F (t)θ . (20)

Following [16], an Extended Instrumental Variable (EIV) is introduced, which is ob-
tained by taking a window of length ±` of the input:

ζ
e(t) =


u(t + `)

...
u(t− `)

 . (21)

The EIV variable can now be used to define a decorrelation cost function, as described
in [16]:

JN
D (θ) = (r−Rθ)TŴ−1(r−Rθ) (22)

R =
1
N

N

∑
t=1

ζ
e
L(t)⊗ϕL(t) (23)

r =
1
N

N

∑
t=1

ζ
e
L(t)⊗uL(t), (24)

where ϕL is the regressor defined from signals filtered with (12), ζ e
L(t) = Lζ e and

Ŵ is a positive semi-definite weight, optimally a consistent estimate of the residual
covariance matrix

W̄ = E
[
(r−Rθ)(r−Rθ)T

]
. (25)

The decorrelation function in the absence of noise, for large windows `, leads asymp-
totically to Rθ − r = 0. Thus, the minima of the decorrelation cost function (22) are
equivalent to the minima of the virtual reference cost function (2), and are given by:

θ̂ = argmin
θ

JD(θ) =
(
RTW−1R

)−1 (
RTW−1r

)
. (26)

The length of the window for the EIV method represents a tuning knob of the algo-
rithm, however an arbitrarily large number can be used.

Remark 4 As is well-known in the literature about model reference tuning methods,
the choice of the reference model heavily influences the result of the tuning algo-
rithms. In particular, stability of the closed-loop system for a given reference model
is not a priori guaranteed by all algorithms [5]. Different controller structures can lead
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to quite different performance since the resulting closed-loop systems can approxi-
mate the reference model with a different bias. Issues such as non-minimum phase
plants, including the presence of time delays, can become critical [7]. Defining ref-
erence models in the data-driven framework is not straightforward, as this would
require knowledge of the system which data-driven methods aim to eliminate. How-
ever, keeping in mind that the reference model expresses the desired dynamics for the
complementary sensitivity function of the closed-loop system, it is usually sufficient
to have some knowledge of the dominant dynamics of the system , often expressed as
a second-order model. In such a case the desired crossover frequency can be defined,
and an approximation of the system damping ratio can be set. These simple reference
models can be used when the required performance is conservative or as a first iter-
ation, such that the collected data is sufficiently informative over the bandwidth of
interest. However, when better performance is required, the reference model can be
enhanced by suitably introducing additional poles and zeros. The presence of time
delays can also be determined (using data analysis methods, such as correlation anal-
ysis, on the collected data set) to relax the requirements on the control effort, making
it more compatible with the dataset. Therefore, data-driven model reference methods
such as the ones exploited in this work find their best use in case of fast re-tuning of
the controller when the performance of the closed-loop system is reduced due to ag-
ing or when the operating conditions change. For additional details about the choice
of appropriate reference model see [22,23].

3 Multirotor platform and control architectures

The considered multirotor platform, called ADAM-0 (see Figure 3), is a fixed-pitch
quadrotor with the following characteristics:

– Take-Off Weight (TOW): approximately 1450 grams;
– Battery: 4S Li-Po 4000 mAh;
– Flight time: 12 minutes;
– Frame dimensions (footprint): 500 mm (excluding rotors).

Concerning the baseline control architecture, the ADAM-0 platform adopts an
attitude control scheme based on identical decoupled cascaded PID loops for the
pitch, roll and yaw axes, running at 250 Hz. For instance, focusing on the pitch axis,
the outer loop (measured angle ϑ , set-point ϑ o) is a P controller, while the inner
controller is a complete PID that computes the control torque M. More specifically,
the derivative action of the inner loop is computed starting from the pitch rate q and
not from the pitch angular rate error. Without loss of generality, in this work we will
focus on the pitch and roll angle alone: the default parameters for the pitch and roll
axis of the controller are shown in Table 1, which will be used for the experiment that
follow.

The decoupled architecture is justified by the fact that if the body axes are princi-
pal axes of inertia, then when the quadrotor is in near-hovering conditions the Degree
of Freedoms (DoFs) could be assumed decoupled. Note, in passing, that the symmet-
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Fig. 3: The ADAM-0 UAV.

Table 1: ADAM-0: default controller parameters.

KO
P KI

P KI
I KI

D[
6.5 0
0 6.5

] [
0.15 0

0 0.15

] [
0.05 0

0 0.05

] [
0.003 0

0 0.003

]

ric configuration of multirotors 2 allows one to easily identify a set of principle axes
of inertia. Hence, the attitude control problem is reduced to a set of three separate
problems for, respectively, the pitch, roll and yaw axes. This, in turn, implies that
the controllers for each axis can be tuned independently, for instance by exploiting
the VRFT method outlined in Section 2.2. In practice, however, the system does not
have an exactly decoupled attitude dynamics and a Multiple Input Multiple Output
(MIMO) controller should be considered to enforce a desirable decoupled behavior

KO
p KI

p

KI
i

Ts
z−1 KI

d
z−1
Ts

UAV dynamics
{φ o,ϑ o} {po,qo} +

+ −

{φ ,ϑ}
{p,q}

−−

{L ,M }+

Fig. 4: Block diagram of the control system.

2Inspecting Figure 3, there are two planes of symmetry containing the axis orthogonal to the rotors,
one having the other two axes aligned with the axes of the arms (+ configuration) and one having the other
two axes making 45deg with respect to the axes of the arms (x configuration))
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among the axes and improve performance. In this case, full 2×2 gain matrices must
be employed in which the diagonal terms affect the control action over the same axis
of the measurement, for instance, pitch rate error leading to a pitch moment. Instead
the off-diagonal terms lead to control action on the other channel: the i j-th (i 6= j)
component of the controller gives an effect on input i for an error on component
j. These terms represent the decoupling action of the MIMO controller. A diagonal
matrix is consequently equivalent to a set of two decoupled controllers. The multi-
variable version of the Virtual Reference Feedback Tuning (VRFT) (see Section 2)
will be employed in the next sections to tune the parameters of the considered MIMO
controller. To this aim, note that the overall control structure can be converted into
the regressor form in equation (16) in a straightforward step, resulting in:

u(t) = u(t−1)+
ne

∑
i=0

Bie(t− i)+
ny

∑
j=0

B jy(t− j)+
nr

∑
m=0

Bmr(t−m) (27)

= u(t−1)+ϕ
T (t)θ

where u(t) = [L (t)M (t)]T and Bi are suitable matrices collecting the control pa-
rameters in the diagonal matrices KO

P , KI
P, KI

I and KI
D.

4 Results

4.1 Simulation results

A complete Simulink ADAM-0 nonlinear simulator has been used to validate the
results of the algorithm. The simulator is able to replicate the attitude dynamics un-
der feedback control on all axes. An artificial inertial coupling has been introduced,
where the off-diagonal terms represent 10% of the diagonal terms. These terms will
introduce gyroscopic effects since the pitch and roll axis are no longer principal axes
of inertia. Noise has been introduced in the system, modeled as white noise with a
standard deviation obtained from hovering endurance tests to account for the uncer-
tainty of the state estimates.

Simulation data is collected in closed-loop in order to create the input and out-
put dataset required for the VRFT algorithm. Two Pseudo Random Binary Sequence
(PRBS) excitation signals, one for the pitching moment and one for the rolling mo-
ment, are applied consecutively. The input ū(t) =

[
L̄ M̄

]T is injected in the system
as shown in Figure 2. The two signals are different but they share the same PRBS
parameters (signal amplitude and min/max switching interval). In this case, for each
axis, a total excitation time of 20s has been used, with a maximum excitation band-
width of 50rad/s and an amplitude of 0.15. The latter is a non-dimensional amplitude,
referred to the maximum moment that can be applied. The amplitude of the excita-
tion signal has been selected in order to achieve a good signal-to-noise ratio without
inducing nonlinear effect that would undermine the assumption behind the VRFT
methods outlined in Section 2.

As illustrated in Section 2.2, an initial controller Cd(z) that stabilizes the system
must be available, with parameters collected in Table 1.
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Fig. 5: ADAM-0 Simulink model.

Reference models

For both the pitch and roll inner loops, the reference model is a second order model,
with a desired bandwidth and damping ratio of 20rad/s and 0.4 respectively:

Mi(z) =
0.003131z+0.003065
z2−1.932z+0.9380

.

In this specific case no filtering action was needed, thus the weighting function has
been defined as Wi(z) = I. Therefore, considering the MIMO case the reference mod-
els are 2× 2 matrices of transfer functions, with the transfer function Mi(z) on the
main diagonal and zeros on the secondary diagonal, requiring full decoupling.

Similarly, requirements have been set for the outer loop, once again a second or-
der model, and a slower response. The desired bandwidth is 10rad/s with a damping
ratio of 0.7:

Mo(z) =
0.0007852z+0.0007706

z2−1.9440z+0.9455
.

Controller tunings and comparison

Results from the SISO algorithm applied to both pitch and roll data are then compared
to the full MIMO formulation shown in Section 2.3, for the given set of reference
models for the inner and outer dynamics. The resulting parameters of both algorithms
are illustrated in Table 2. It is shown that the diagonal terms are almost the same. The
gains of the outer loop P controller feature an almost identical term on the diagonal,
and the outer diagonal terms which are smaller by two orders of magnitude, which is
reasonable in view of the small expected cross-couplings between the two axes (see
the discussion in Section )

In order to compare the results, a doublet benchmark has been considered, that is
a quick consecutive variation of the attitude that has a zero mean. The doublet period
T = 0.42s and amplitude A = 22.5deg is held constant among the different tests. The
simulated pitch doublet is shown in Figure 6, where it is highlighted that the full
MIMO controller is able to significantly reduce the coupling effects. It can be seen
that while the control effort is comparable, a better attitude tracking is achieved.
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Table 2: ADAM-0: optimal controller parameters for outer and inner controllers con-
sidering the VRFT method with closed-loop simulation data.

KO
P KI

P KI
I KI

D

MIMO
[

5.2090 0.0104
0.0114 5.1874

] [
0.1464 0.0094
0.0094 0.1275

] [
0.2630 0.0038
0.0038 0.2555

] [
0.0005 0

0 0.0004

]
SISO

[
4.6650 0

0 4.6772

] [
0.1490 0

0 0.1300

] [
0.1765 0

0 0.1807

] [
0.0001 0

0 0.0001

]

4.2 Experimental results

The experimental data is collected in the same way as presented for the simulation
result. The default controller parameters are used as the initial regulator, illustrated in
Table 1.

Figure 7a and Figure 7b show the involved signals in the data-driven tuning pro-
cedure. These signals share the same specifications of the simulated experiment in
Section 4.1. For the sake of clarity, the signals are represented in two figures but were
collected sequentially during the same flight.

Reference models

As seen in Section 4.1, the chosen reference models are second order models with
the addition of a delay. The choice of the reference model in data-driven methods can
affect the stability of the feedback system, thus it might need adjustments between
tests and lead to slightly different results. In this case, the reference model chosen
for the SISO algorithm is different from the one used for the simulation and MIMO
formulation.

Table 3: Model references for the inner and outer loops used for the experiments.

ω [rad/s] ζ Delay

MIMO Inner loop 18 0.3 1
Outer loop 10 0.8 1

SISO Inner loop 20 0.4 3
Outer loop 10 0.7 3

Controller tunings and comparison

The benchmark for the performance comparison is a doublet, with period T = 0.45s
and amplitude A = 40deg, similarly to the simulation section. Exploiting the ref-
erence models and closed-loop experimental data, the VRFT method leads to the
parameter values reported in Table 4. Note again that the secondary diagonal of the
parameters in Table 4 is always one or more orders of magnitude smaller than the
primary terms.
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Fig. 6: Simulation of pitch attitude doublet

Since the doublet experiment requires the position and velocity outer feedback
loops to be disabled, experiments have been carried out manually by a pilot, lead-
ing to difficulties in replicating the exact input and conditions. Preliminary tests are
shown in Figures 8 and 9, where the roll doublet response shows a coupling, which
in both cases is very limited, as expected. Inspecting the time responses, the pitch
angle variations are about ± 3deg, however they are smoother for the MIMO solu-
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Fig. 7: ADAM-0: closed-loop experimental dataset used by MIMO data-driven
method.
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Table 4: ADAM-0: optimal controller parameters for outer and inner controllers con-
sidering the VRFT method with closed-loop experimental data.

KO
P KI

P KI
I KI

D

MIMO
[

4.4484 −0.1287
0.2364 5.2220

] [
0.1187 −0.0004
0.0044 0.1252

] [
0.1749 0.0023
0.0090 0.1164

] [
0.0007 0.0001

0 0.0011

]
SISO

[
4.2505 0

0 4.2061

] [
0.1381 0

0 0.1495

] [
0.1039 0

0 0.3039

] [
0.0015 0

0 0.0027

]

tion. Note that the regulator obtained from the MIMO algorithm leads to a quicker
response. The MIMO controller also features a quick suppression of the oscillations
in the pitch rate loop, which is able to follow the rate setpoint given from the attitude
feedback loop. Finally, the control effort on the pitch axis is reduced with respect to
the SISO controller.

To evaluate the performance on the roll axis in a more systematic manner, the
reference models have also been simulated for the measured attitude setpoint and
compared to the responses of the roll rate and roll angle, see Figure 10. Furthermore,
two cost functions have been defined in order to compare the results, one for the
setpoint tracking error and one for the model tracking error, for which a qualitative
result, based on the time domain response, has been described. Specifically, the cost
functions are:

JM =
1
N

k0+N

∑
k=k0

(φ(k)−Mo(z)φ o(k))2 (28)

Jr =
1
N

k0+N

∑
k=k0

(φ(k)−φ
o(k))2 (29)

where k0 indicates the starting point of the doublet, while N is the number of samples
of the doublet and Mo(z) is the reference model for the outer loops. The subscript M
indicates the model tracking cost, while the subscript r indicates the setpoint tracking
cost. The results are collected in Table 5: as can be seen from the table, and consis-
tently with Figure 10, the MIMO controller performs better than the SISO one both
in terms of setpoint and model tracking.

Table 5: ADAM-0: roll performance cost functions from experimental data.

JM,o Jr,o

MIMO 0.0033 0.1612
SISO 0.0122 0.2645
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Fig. 8: ADAM-0: Roll doublet experiment with SISO method parameters.
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Fig. 9: ADAM-0: Roll doublet experiment with MIMO method parameters.
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Fig. 10: ADAM-0: Roll axis performance of the nominal configuration.
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5 Conclusions

The problem of data-driven design of the attitude control law for a multirotor UAV
has been considered. The VRFT method has been extended to consider a more gen-
eral class of controllers and by allowing the closed-loop execution of data-collection
experiments on the system. Experimental results show that the in-flight tests can be
conducted in a safe way and that a satisfactory level of performance can be achieved
by using a 20 seconds data sets.

It is highlighted that the MIMO formulation of the problem allows to reduce the
effects of coupling that can arise for aggressive manoeuvres, such as the ones featured
in the experiments, even for the case of seemingly symmetrical builds. These cou-
plings typically arise from a number of dynamic and aerodynamic effects which are
difficult to model, thus all situations leading to a nonlinear behaviour. These effects
make this class of synthesis methods very appealing, since almost no assumptions on
the system are made.

As with other data-driven methods, no stability constraint is enforced on the algo-
rithm, making the solution of the method reliant on the choice of a suitable reference
model. The main advantages over the classic SISO formulation are that the instru-
mental variable parameters (model order and past/future windowing, see [15]) are not
needed, thereby reducing the number of tuning variables. Furthermore, for one of the
possible choice of instrumental variable for the classic SISO algorithm, the initial
controller must be known, while in the MIMO formulation it is no longer necessary.
Finally, this method allows a more general approach to the problem, removing the
hypothesis of symmetric configurations and decoupled dynamics.
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