Given a graph, a set of origin-destination (OD) pairs with communication requirements, and an integer k >= 2, the network design problem with vulnerability constraints (NDPVC) is to identify a subgraph with the minimum total edge costs such that, between each OD pair, there exist a hop-constrained primary path and a hop-constrained backup path after any k - 1 edges of the graph fail. Formulations exist for single-edge failures (i.e., k = 2). To solve the NDPVC for an arbitrary number of edge failures, we develop two natural formulations based on the notion of length-bounded cuts. We compare their strengths and flexibilities in solving the problem for k >= 3. We study different methods to separate infeasible solutions by computing length-bounded cuts of a given size. Experimental results show that, for single-edge failures, our formulation increases the number of solved benchmark instances from 61% (obtained within a two-hour limit by the best published algorithm) to more than 95%, thus increasing the number of solved instances by 1,065. Our formulation also accelerates the solution process for larger hop limits and efficiently solves the NDPVC for general k. We test our best algorithm for two to five simultaneous edge failures and investigate the impact of multiple failures on the network design.

A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints

Ola Jabali;
2020-01-01

Abstract

Given a graph, a set of origin-destination (OD) pairs with communication requirements, and an integer k >= 2, the network design problem with vulnerability constraints (NDPVC) is to identify a subgraph with the minimum total edge costs such that, between each OD pair, there exist a hop-constrained primary path and a hop-constrained backup path after any k - 1 edges of the graph fail. Formulations exist for single-edge failures (i.e., k = 2). To solve the NDPVC for an arbitrary number of edge failures, we develop two natural formulations based on the notion of length-bounded cuts. We compare their strengths and flexibilities in solving the problem for k >= 3. We study different methods to separate infeasible solutions by computing length-bounded cuts of a given size. Experimental results show that, for single-edge failures, our formulation increases the number of solved benchmark instances from 61% (obtained within a two-hour limit by the best published algorithm) to more than 95%, thus increasing the number of solved instances by 1,065. Our formulation also accelerates the solution process for larger hop limits and efficiently solves the NDPVC for general k. We test our best algorithm for two to five simultaneous edge failures and investigate the impact of multiple failures on the network design.
2020
network design
survivability
vulnerability
branch-and-cut algorithm
length-bounded minimum cut
File in questo prodotto:
File Dimensione Formato  
JOC.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri
11311-1142084_Jabali.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 387.16 kB
Formato Adobe PDF
387.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1142084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact