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CIRRELT and HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7, Canada,
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Given a graph, a set of origin-destination (OD) pairs with communication requirements and an integer k≥ 2,

the network design problem with vulnerability constraints (NDPVC) is to identify a subgraph with the

minimum total edge costs such that between each OD pair, there exist a hop-constrained primary path, and

a hop-constrained backup path after any k − 1 edges of the graph fail. Formulations exist for single edge

failures (i.e., k = 2). In order to solve the NDPVC for an arbitrary number of edge failures, we develop two

natural formulations based on the notion of length-bounded cuts. We compare their strengths and flexibilities

in solving the problem for k≥ 3. We study different methods to separate infeasible solutions by computing

length-bounded cuts of a given size. Experimental results show that for single edge failures, our formulation

increases the number of solved benchmark instances from 61% (obtained within a two-hour limit by the best

published algorithm) to over 95%, thus increasing the number of solved instances by 1065. Our formulation

also accelerates the solution process for larger hop limits and efficiently solves the NDPVC for general k.

We test our best algorithm for two to five simultaneous edge failures and investigate the impact of multiple

failures on the network design.

Key words : network design; survivability; vulnerability; branch-and-cut algorithm; length-bounded

minimum cut

History :

1. Introduction

The purpose of this paper is to develop exact solution algorithms for the network design

problem with vulnerability constraints (NDPVC), capable of handling a general number

of edge failures. To formally define the problem, consider a graph G= (N,E), where N is

the set of nodes, and E is the set of edges, with edge cost ce for e∈E. The vulnerability of
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the graph to failures is determined by an integer parameter k≥ 2, equal to the maximum

number of simultaneously failing edges in the graph, plus one. We seek to find two types of

paths, ‘primary’ and ‘backup’, for a set of origin and destination (OD) pairs. The primary

paths are used to connect the OD pairs when there are no failures in the graph and

the backup paths are used when the failures obstruct the primary paths. A demand r

is defined as a quadruple (sr, tr,H
p
r ,H

b
r), where sr and tr are the origin and destination

nodes, respectively, and Hp
r and Hb

r are the hop bounds on the primary and backup paths,

respectively. We use length of a path or number of hops interchangeably to refer to the

number of edges used in the path. Let R be the set of all demands. For a given NDPVC

instance (G,R, k), the problem is defined as identifying a subgraph of G with the minimum

total edge costs such that, between nodes sr and tr for r ∈R, there exists a primary path

of length at most Hp
r edges, and a backup path of length at most Hb

r edges after any k− 1

edges of the graph fail. The NDPVC was first introduced by Gouveia and Leitner (2017a)

and different mixed-integer linear programming (MILP) models were developed for a single

edge failure (i.e., for k = 2). Their flow-based models are built on the idea of finding a

set of ‘backup edges’ for each OD pair in order to maintain the communication after the

edges on the primary path fail. The authors then improved on their previous work by

developing branch-and-cut and Benders decomposition algorithms (Gouveia et al. 2018).

In this paper, we formulate and solve the NDPVC for k≥ 2. The case of k= 2 is equivalent

to the problem studied by Gouveia et al. (2018), for which we substantially accelerated the

solution process. Furthermore, we solved the problem for k ≥ 3, i.e., considering multiple

edge failures.

The NDPVC is closely related to the survivable network design problem, in particular

to the k-edge-disjoint network design problem (k-ESNDP), defined as identifying a sub-

graph of G with the minimum total edge costs, such that for each OD pair, there exists

k edge-disjoint paths. Stoer (1992) and Grötschel et al. (1995) investigated the polyhe-

dral properties of the problem for k = 2 and general k, respectively. For a comprehensive

overview of the k-HSNDP, we refer the reader to Kerivin and Mahjoub (2005), which cov-

ers properties, polynomially solvable special cases, polyhedral analysis and cutting plane

approaches. We also refer the reader to Bendali et al. (2010) for a more recent reference on

cutting plane methods for the k-edge-connected subgraph problem. Note that a solution of

the k-ESNDP can result in very long paths. For example, a Hamiltonian cycle is a feasible
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solution in which all OD pairs are connected by two different paths. To account for the

quality of service in transportation and telecommunications networks, it is common to take

into account the number of edges on the path, often referred to as ‘hop bound’ (Balakrish-

nan and Altinkemer 1992). Fortz et al. (2000), Fortz and Labbé (2002), Fortz et al. (2006)

investigated the survivability in networks by considering hop-constrained cycles connecting

OD pairs by two alternative paths. Gouveia (1996, 1998) considered hop constraints in

spanning trees. The hop-constrained survivable network design problem (k-HSNDP) is an

extension of k-ESNDP obtained by considering a hop constraint for each OD pair. Building

on the layered network flow formulation of Gouveia (1998), Botton et al. (2013) presented

a Benders decomposition algorithm for the k-HSNDP for arbitrary k and length bounds.

The main difference between the k-HSNDP and the NDPVC is that in the former prob-

lem, edge-disjoint paths are constructed, whereas in the latter problem, the primary and

backup paths need not be disjoint, the only requirement being to ensure hop-constrained

connectivity of sources to their destinations after the failure of any k edges in the graph.

Hence, the k-HSNDP solution is more conservative and can result in suboptimal or infea-

sible solutions to instances for which NDPVC has solutions with arbitrarily smaller total

costs (Gouveia and Leitner 2017a).

Botton et al. (2013) refer to the models that use only a single variable for each edge

and an exponential number of constraints as ‘natural models’ and argue that the best

computational performances are generally obtained through these models. The authors also

discuss the difficulties associated with finding such models when hop bounds are present in

the problem. In previous NDPVC formulations developed by Gouveia and Leitner (2017a)

and Gouveia et al. (2018), the authors rely on variables for each combination of edge,

OD pair and hop bound. Therefore, the models are prone to stalling for large problem

instances. In contrast natural formulations would not suffer from increasing the number of

variables for large networks but, increasing network size can have a significant impact on

the number of needed constraints. As a result, it is critical to develop efficient separation

techniques in order to make such models work efficiently.

1.1. Scientific Contributions

In this paper, we develop two natural models with exponential number of constraints for

the NDPVC with an arbitrary number of edge failures. We compare the two models in

terms of their strengths and flexibility in solving the problem when multiple simultaneous
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failing edges are present. We develop an exact branch-and-cut algorithm to solve these

models. The separation problem consists of identifying a length bounded cut of a given size.

We develop a model and an algorithm to solve the separation problem, and investigate the

properties of the two NDPVC models to accelerate the implementation. Our best model

solves 95% of the benchmark instances for single edge failures, of which only 61% could

be solved by the best published algorithm (Gouveia et al. 2018). We also show that our

model performs well when the hop bound is increased. Furthermore, our best model can be

used to solve the problem for k≥ 3, which was not yet solved in the literature. We report

computational results for k= 2, . . . ,6.

1.2. Organization of This Paper

The remainder of this paper is organized as follows. In Section 2, we develop our mod-

els and investigate their properties. Both of our formulations depend on the notion of

length-bounded cuts. Section 3 presents alternative ways of solving the length-bounded

cut problem, which arises as the separation problem for our formulations. In Section 4,

we present the data, the experimental settings, implementation details and computational

results, and we conclude the study in Section 5.

2. Mathematical Models

We first introduce our notation, and we then develop two alternative natural models and

compare their strengths and flexibilities in solving the NDPVC for k≥ 3.

2.1. Notation

Consider the undirected graph G= (N,E), where N is the set of nodes and E is the set

of edges [i, j] with i, j ∈N and by convention i < j. We also define an associated directed

graph Ḡ= (N,A) where the arc set A contains two opposite arcs for each edge [i, j] ∈E.

Let dij be the number of minimum hops, equivalently the ‘distance’, in Ḡ between nodes

i, j ∈ N . We say that edge [i, j] corresponds to arcs (i, j) and (j, i), and vice versa. We

define Ap
r = {(i, j)∈A : dsri + djtr + 1≤Hp

r } and Ab
r = {(i, j)∈A : dsri + djtr + 1≤Hb

r}. Let

N p
r and N b

r be the node sets induced by arcs in Ap
r and Ab

r, respectively. We refer to the

graphs Gp
r = (N p

r ,A
p
r) and Gb

r = (N b
r ,A

b
r) as the primary and backup graphs, respectively,

of demand r ∈R.

We also recall the definition of a length bounded cut (lb-cut). Given Ḡ= (N,A), a positive

integer H as a length bound on the paths and an OD pair (s, t), a set of arcs S̄ ⊂A is called
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an lb-cut, if the removal of the arcs of S̄ destroys all paths of length at most H from s to

t. Observe that there can be more lb-cuts in Ḡ than the number of cuts that destroy all

paths between the same OD pair. Let S ⊂E be the set of edges corresponding to the arcs

in S̄ ⊂A. We also refer to edge set S as an lb-cut, since it destroys all undirected paths

between the same OD pair in the undirected graph G. Let Γp
r be the set of all such edge

sets S corresponding to the lb-cuts S̄ of length bound Hp
r in Gp

r. Similarly Γb
r is defined as

the set of all edge sets S ⊂ E corresponding to the lb-cuts S̄ ⊂A of length bound Hp
r in

Gb
r.

For an edge set Λ ⊂ E, let Gb
r(Λ) be the graph induced by the arcs Ab

r(Λ) := {(i, j) ∈
Ab

r : [i, j] /∈ Λ}. We also define Γb
r(Λ) as the set of all edge sets S ⊂ E corresponding to

the lb-cuts S̄ ⊂Ab
r(Λ) of length bound Hp

r in Gb
r(Λ). Finally, for convenience, we refer to∑

e∈S xe as x(S).

2.2. A Natural Formulation

We now develop a natural formulation for the NDPVC, which we refer to as NF. In our

formulation, we ensure the existence of a hop-constrained path using lb-cuts. The lb-cuts

are also known as jump inequalities, see, e.g. Dahl et al. (2006), where they are used to

model the hop-constrained minimum spanning tree problem. The same modeling technique

to ours is also used by Arslan et al. (2017).

Proposition 1. For a given graph G, an OD pair (s, t) and a hop bound H, there exists

a path of length at most H from s to t if and only if every lb-cut contains at least one edge

of the path.

Proof Assume that there exists a path p of length at most H from s to t. This implies

that every lb-cut, by definition, includes an arc from the path p. By contraposition, assume

that all paths have a length strictly greater than H. Then ∅ is an lb-cut, implying that

there exists an lb-cut that contains no edge in path p. �

The NF formulation is based on the characteristic observed by Gouveia and Leitner

(2017a) which entails that if a set of edges fail, then the remaining edges should enable a

hop-constrained backup path. Let binary variables xe be equal to one if and only if edge

e∈E belongs to the solution.

(NF) minimize
∑
e∈E

cexe (1)
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subject to

x(S)≥ 1 S∈Γp
r, r ∈R (2)

x(S)≥ 1 S∈Γb
r(Λ),Λ⊂Ab

r : |Λ|= k− 1, r ∈R (3)

xe ∈ {0,1} e∈E. (4)

The objective function minimizes the total cost of all edges belonging to the solution.

Constraints (2) ensure for every demand r ∈R that there exists a primary path of length

at most Hp
r . Constraints (3) impose, for each demand r, the existence of a backup path of

length at most Hb
r when any edge set Λ⊂Ab

r : |Λ|= k− 1 fails. Note that, for convenience,

we prefer to state Constraints (2) and (3) separately rather than putting them as a single

set of constraints. Constraints (4) are the integrality requirements. Since the number of

constraints (2) and (3) is exponential, we will develop a branch-and-cut algorithm to solve

NF. The details of separation algorithms are presented in Section 3.

2.3. A Flexible Formulation

Even though NF can handle an arbitrary number of edge failures, it requires the enumera-

tion of all subsets of edges set of cardinality k−1. Therefore, identifying violation becomes

cumbersome and the separation problem fast becomes difficult to solve for increasing k val-

ues. In order to develop a more flexible model for the general case with an arbitrary number

of edge failures, we need the following theorem, which is one of the main contributions of

this paper.

Theorem 1. For given r ∈R, an integer k ≥ 2 and a binary vector x ∈ {0,1}|E|, there

exists a hop-constrained backup path of length at most Hb
r after failure of any k− 1 edges

in the graph, if and only if x(S)≥ k for all lb-cuts S∈Γb
r.

Proof (Sufficiency) Assume that there exists a hop-constrained path of length at most

Hb
r from sr to tr for r ∈R after any k− 1 edges fail. Let Smin = arg min

S∈Γb
r

{x(S)}. Suppose

that f ≥ 0 failing edges are in Smin. By assumption, there exists a backup path of length

at most Hb
r after the edges fail. By definition, the lb-cut Smin contains at least one of the

backup path edges. Then, Smin contains f failing edges and at least one non-failing edge,

which implies that x(Smin)≥ f + 1 for all possible values of f . Since k− 1 edges fail, we

have f ≤ k − 1. The tightest condition is when f = k − 1 and therefore x(Smin) ≥ k. By

definition of Smin, we have x(S)≥ x(Smin) for all S∈Γb
r. Therefore x(S)≥ k for all S∈Γb

r.
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Figure 1 An example graph with a single demand r = (0,3,3,5) and k = 3.

(Necessity) Similar to the proof of Proposition 1: by contraposition, suppose that the

length of every path is strictly greater than Hb
r after failure of edges; then, ∅ is an lb-cut

with x(∅)<k. �

The following corollary shows that having x(S)≥ k with vector x ∈ R|E| and 0≤ xe ≤ 1

ensures the existence of a hop-constrained path.

Corollary 1. For a given r ∈R, an integer k≥ 2 and a vector x∈ R|E| with 0≤ xe ≤ 1

for all e ∈E, if x(S)≥ k for all lb-cuts S∈Γb
r, then there exists a hop-constrained backup

path of length at most Hb
r after failure of any k− 1 edges in graph Gb

r.

Proof x(S)≥ k and xe ≤ 1 for all e ∈E implies that for every lb-cut S∈Γb
r, at least k

edges satisfy xe > 0 for all e ∈ S. Then, from Theorem 1 there exists a hop-constrained

path of length at most Hb
r in the graph induced by edges with xe > 0 after failure of any

k− 1 edges.

An example of a graph with a single demand r with sr = 0, tr = 3, Hp
r = 3, Hb

r = 5 and

k= 3 is depicted in Figure 1. The only feasible primary path is (0,1,2,3). Note that if the

two edges on the primary path fail (e.g., [0,1] and [1,2]), then having at least one alternative

path, e.g., (0,4,1,5,2,3) suffices to ensure the existence of a backup path. However, when

at least one edge which is not on the primary path fails (e.g., edge [0,4] not on the primary

path and edge [0,1] on the primary path), then the cardinality of each length-bounded cut

must be at least three. Note that in the above example, the solution to NDPVC contains

all edges.

Theorem 1 provides us with constraints to model the backup paths without enumerating

any edge set, as is done in Constraints (3). Put differently, there exists a more flexible

way to model the backup paths. We shall therefore refer to our new model as the ‘Flexible

Formulation’ (FF):

(FF) minimize
∑
e∈E

cexe
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subject to (2), (4)

x(S)≥ k S∈Γb
r, r ∈R. (5)

The difference between NF and FF is that Constraints (3) are replaced by Constraints

(5), which ensure the existence of a hop-constrained backup path after the failure of any

k− 1 edges in G, due to Theorem 1. Note that in contrast to NF, FF does not require the

enumeration of edge subsets.

2.4. Comparison of the Two Formulations

Lemma 1. For r ∈R and an integer k ≥ 2, consider the graph Gb
r. Let Λ⊂Ab

r be a set

of edges with |Λ|= k− 1 and S∈Γb
r be an lb-cut in Gb

r. Then S \Λ is an lb-cut in Gb
r(Λ).

Proof Let P(Λ) be the set of length-bounded paths in Gb
r having at least one edge in

the set Λ, and let P(Λ) be the set of length-bounded paths in Gb
r with no common edge

with the set Λ. Since the cut S destroys all paths in P(Λ)∪P(Λ) and Λ destroys all paths

in P(Λ), we have the desired result. �

Let XNF and X FF be the feasible sets of the NF and FF formulations, respectively.

Proposition 2. X FF ⊆XNF.

Proof We investigate the only difference in formulations, which is Constraints (3) being

replaced by Constraints (5). Let x∗ ∈ XFF , S∈Γb
r̂ for r̂ ∈ R and Λ ⊂ S with |Λ| = k − 1.

Then x(S)≥ k, which can be rewritten as x(Λ)+x(S \Λ)≥ k. Since x(Λ)≤ k−1, it follows

that x(S \Λ)≥ 1. Due to Lemma 1, S \Λ is an lb-cut in Gb
r(Λ). Therefore, x∗ ∈NF . �

To show that the inclusion is strict, consider a single demand with three length-bounded

and edge-disjoint paths connecting its origin to its destination and k= 2. A solution with all

variables corresponding to edges equal to 0.5 satisfies Constraints (3), but not Constraints

(5).

3. Separation Problems and Algorithms

Given a solution x∗ ∈ RE of NDPVC, the separation problem for Constraints (2), (3) and

(5) is to identify an lb-cut of a given weight or to conclude that none exists. For r ∈R, we

separate

• Constraints (2) by an lb-cut S∈Γp
r with x∗(S)< 1,

• Constraints (3) by an lb-cut S∈Γb
r(Λ),Λ⊂Ab

r : |Λ|= k− 1 with x∗(S)< 1 and
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• Constraints (5) by an lb-cut S∈Γb
r with x∗(S)<k.

In what follows, we provide some background on lb-cuts, as well as alternative techniques

to separate these inequalities. Menger’s Theorem (Menger 1927) states that in a graph

G, the maximum number of edge-disjoint paths between two nodes s and t equals the

minimum cardinality s-t cut. Ford and Fulkerson (1956) generalized Menger’s result by

showing that the maximum flow between nodes s and t equals the minimum capacity s-t

cut. In particular, this cut destroys all s-t paths. The search for lb-cuts dates back to

the work of Adámek and Koubek (1971) who showed that the Ford and Fulkerson’s max

flow-min cut theorem may not hold when bounds are imposed on the path lengths. These

authors also argued that for length bounds of at most three, the max flow equals the

min cut. Early works on bounded paths include that of Lovász et al. (1978), in which the

Mengerian theorems for paths of bounded length are discussed. Mahjoub and McCormick

(2010) presented a graph transformation, which we discuss in Section 3.1, to find the

minimum lb-cut for length bounds of at most three. Finding a minimum cut on their

transformed graph is equivalent to finding a minimum lb-cut in the original graph. For

length bounds of size at most four, it is known that finding the minimum cardinality lb-cut

is NP-hard (Baier et al. 2006).

In the aforementioned studies, the objective is to minimize the cardinality of the cut.

However, in our separation problem, we are concerned with the weight of an lb-cut. To this

end, we present an IP model in Section 3.2, due to Arslan et al. (2017), for the solution of

the minimum weight lb-cut problem. Observe that our separation problem can be solved

by the decision version of the minimum lb-cut problem, when parametrized by the size k

of the cut. Golovach and Thilikos (2011) presented an FTP algorithm for finding an lb-cut

of cardinality at most k or for concluding that no such lb-cut exists. In Section 3.3, we

adapt their algorithm to solve our separation problem. We discuss how we can use the

regular minimum cut finding algorithms for our separation purposes in Section 3.4. Finally,

in Section 3.5, we present a way to strengthen the generated cuts.

3.1. Length-bounded Cuts of Length at Most Three

Mahjoub and McCormick (2010) observed that all the nodes on paths of length at most

three are either connected to the origin or to the destination nodes. Building on this

observation, the authors developed a linear-time network transformation procedure where

the maximum flow-minimum cut theorem applies to the lb-cuts in the transformed graph.
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Therefore, finding a minimum cut on this transformed graph boils down to solving a

minimum cut problem. We refer to this technique as lbcut3.

3.2. IP Model

We present an integer programming model for the identification of a minimum lb-cut,

which is the arc version of the model developed by Arslan et al. (2017) for finding minimum

weight length-bounded node-cuts. Given a directed graph Ĝ= (N̂ , Â) with node and arc

sets N̂ and Â, respectively, a positive integer length bound H, and origin and destination

nodes s, t∈ N̂ . Each arc (i, j)∈ Â has a unit length and a non-negative weight yij. Ĝ equals

Gp
r when finding lb-cuts in the primal graph to separate Constraints (2) and it equals Gb

r

when finding lb-cuts in the backup graph to separate Constraints (3) and (5). Given a

fractional or integer solution x∗, we obtain the arc weights yij from the corresponding edge

variable values in the solution x∗. We now need the following definition.

Definition 1. For a given graph Ĝ= (N̂ , Â), an edge set S ⊂ Â and two nodes i, j ∈ N̂ ,

the unintercepted shortest path is defined as the shortest path from i to j in the subgraph

induced by arcs Â \S.

Let M be a sufficiently large number, uij be an indicator variable equal to one if and only

if arc (i, j) ∈ Â is in the lb-cut and πi be the length of the unintercepted shortest path

from node i ∈ N̂ to node t. Having πi ≥M implies that there exists no path from i to t.

The following model, which we refer to as lb-cut model (lbcutM), finds a minimum-weight

lb-cut in Ĝ. The logic behind the model is to select a subset of arcs with the minimum

weight so that the length of the unintercepted shortest path from s to t is greater than the

length bound H. Put differently, no path from s to t of length at most H remains after

the selected edges are removed from the graph.

(lbcutM) minimize
∑

(i,j)∈Â

yijuij (6)

subject to

πt = 0 (7)

πi ≤ πj + 1 +Muij (i, j)∈ Â (8)

πs ≥H + 1 (9)

πi ≥ 0 i∈ N̂ (10)

uij ∈ {0,1} (i, j)∈A. (11)
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The objective function minimizes total weight of the lb-cut. When the model is solved, the

minimum lb-cut is identified by the u variables. Constraint (7) fixes the node label πt at

destination equal to zero. Constraints (8) ensures that πi variable is at most the length

of the unintercepted shortest path from node i to node t. Constraints (9) imposes that

the unintercepted shortest path length from the origin to the destination is greater than

l. Constraints (10) and (11) are non-negativity and integrality requirements.

3.3. An Algorithm for Finding Length-bounded Cuts

Given a directed graph, Golovach and Thilikos (2011) developed an algorithm to find an

lb-cut of at most a given size, or to conclude that no such cut exists. In this section, we

present a minor modification of their algorithm so that the output is the weight of the lb-

cut rather than its size. Given a directed graph Ĝ= (N̂ , Â), an OD pair (s, t), a fractional

number k, an integer H, a set of arcs X ⊂ Â and a weight vector w|Â|, our algorithm finds

an s-t lb-cut S in Ĝ, if one exists, containing the set X, such that all paths of length

not exceeding H are destroyed and the total weight of the edges in cut S is strictly less

than k. We refer to the algorithm presented in Algorithm-1 as lbcutA. For conciseness, let

w(S) =
∑

(i,j)∈S wij. The algorithm starts by comparing the weight of the lb-cut X with

the value of k and terminates if the weight is at least k. If not, a shortest s-t path p that

does not include any arc from set X is identified. If its length is at least H + 1, then X

is a feasible lb-cut of a total weight less than k. Otherwise, by definition, at least one

arc on path p needs to be in the cut. The correctness of the algorithm follows from the

observation that if there exists a path of length at most H, then at least one arc on this

path needs to be in the lb-cut. The arguments of Golovach and Thilikos (2011) for the

proof of correctness directly apply to the lbcutA algorithm. We then branch on every arc

on the path p and see whether appending it to the set X makes this set a feasible lb-cut of

weight less than k. With this idea, the recursive Step 7 appends a single arc at each call.

Due to finiteness of the arc set, the algorithm converges. Note that the only modification

to the Golovach and Thilikos (2011) algorithm is in Line 1 where we compare the weight

of the cut rather than the size.

Observe that a single call of lbcutA(Ĝ, s, t, k,H,∅,w) solves the separation problem for

the OD pair (s, t). Furthermore, since the zero-weight arcs do not contribute to the total cut

weight, calling lbcutA(Ĝ, s, t, k,H,X0,w), whereX0 is the set of zero-weight arcs, also yields

the minimum weight lb-cut and is computationally more efficient, especially in cases where
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the network has many zero-weight arcs. Even though the algorithm has an exponential run

time, in practice it performs well as shown in Section 4.

Algorithm 1: lbcutA(Ĝ, s, t, k,H,X,w)

Input: Ĝ, s, t, k,H,X,w.

Output: An s-t lb-cut S ⊇X of weight<k, destroying paths of length H or false if no such lb-cut

exists.

1 if w(X)≥ k then return false;

2 Let p be a shortest s-t path in Ĝ \X;

3 if |p| ≥H + 1 then
4 return X

5 else
6 foreach (i, j)∈ p do

7 Set Y = lbcutA(Ĝ, s, t, k, l,X ∪ (i, j),w)

8 if Y 6= false then return Y ;

9 return false

Note that Constraints (2), (3) and (5) can be separated for both fractional and integer

solutions using the lbcutA algorithm. Observe that when the solution is integer, we can

determine whether there exists a violation of Constraints (2) by solving a single shortest

path problem in line 2. This special case of our algorithm, running in polynomial time, was

also presented by Arslan et al. (2017). With a similar logic, we can separate Constraints

(3) for integer solutions by solving a shortest path problem for every subset of the edge

set of size equal to k − 1. This means that when k = 2, we only solve as many shortest

path problem instances as the number of arcs in Ĝ. The major issue with the separation

of Constraints (3) using the lbcutA algorithm is that in order to determine any violation

for r ∈R, we need to enumerate as many as

( |Â|
k− 1

)
edge sets and solve a shortest path

problem for each of them. This enumeration is obviously only possible for small k values.

Note that there is no need for such an enumeration to separate Constraints (5) in the

flexible formulation FF.

3.4. ε-Minimum Cut Heuristic

Observe that all minimum weight cuts in a graph are also lb-cuts. Therefore, any classical

minimum cut finding algorithm can be used as a heuristic to identify an lb-cut and to

separate both integer and fractional solutions. To strengthen a cut of type x(S)≥ k, we
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need to shrink the size of the lb-cut S. In order to strengthen the generated cut by the

heuristic, we assign a small value ε to those arcs with zero weight. This does not add

significant computational burden to the algorithm, but helps to generate stronger cuts. This

strengthening idea of the cuts generated by the minimum cut algorithm was implemented

by Koch and Martin (1998).

3.5. Strengthening the Cuts

We strengthen the cut generated by the ε-mincut algorithm by assigning an ε value to

zero-weight arcs. However, for the lbcutM model and the lbcutA algorithm, assigning ε to

zero-cost arcs proved to be costly. Therefore, we first generate a minimum weight lb-cut

using the lbcutM model or the lbcutA algorithm. The cut generated generally includes

many zero-weight edges since these edges do not contribute to the objective function.

We then modify the lbcutM model by making the objective function coefficients of the

arc variables in the generated lb-cut equal to one, and equal to a large number to the

remaining arc variable coefficients. This model then minimizes the size of the lb-cut. This

minimization of the cuts proved to be very effective in our experiments. In order not to

spend too much time to prove the optimality of a feasible solution, we set a time limit on

the minimization of the cut size. We refer to this technique as min-lbcutM-h(t), where t is

the time limit.

4. Computational Study

We now present the data, some implementation details, the experimental settings to test

the efficiency of our models and algorithms, and the results.

4.1. Data

We used the same set of problem instances, generated for the NDPVC by Gouveia and

Leitner (2017a), which is available online (see Gouveia and Leitner (2017b)). This set

contains two classes of instances, referred to as grid and random. The former are based on

grid graphs with chords and it consists of two subsets C and D. These subsets represent

different ways to select commodities. The costs of horizontal and vertical edges are random

integers between 1 and 10 and the cost of diagonal edges are random integers between 10

and 50. The random instances, on the other hand, are based on randomly generated graphs

on a plane and contains two subsets, referred to here as E and R. The cost of each edge is a

multiple of the Euclidean length of the edge. Further details on the generation schemes and



14

selection rules are discussed in the paper by Gouveia and Leitner (2017a). Each graph is

associated with a set of instances as shown in Table 1. The first column provides the name

of the set. The number of nodes, arcs and the demands are given in columns two through

five, respectively. ‘#’ is the number of instances in the set. Associated with every instance

is a parameter Hmin defined as the minimum number of hops required to have at least one

path between each OD pair of the demands set. The three leftmost columns provide the

minimum, average and maximum Hmin values of a given instance set, respectively.

4.2. Implementation Details

Here, we present the implementation details of the tests performed to evaluate the efficiency

of the different separation algorithms. We have implemented our models and algorithms

using Java under Linux and CPLEX 12.7.1. All experiments were conducted on a cluster

of 27 machines each having two Intel(R) Xeon(R) X5675 3.07 GHz processors running on

Linux. Each machine has 12 cores and each experiment was run using a single thread.

Similar to previous studies, we set the time limit for all experiments to 7200 seconds, and

the memory limit to 3GB.

For a length bound H ≤ 3, we used the lbcut3 algorithm for the exact separation,

presented in Section 3.1, which requires a graph transformation and running a minimum cut

algorithm. This algorithm is computationally very effective, therefore we only use lbcut3

for H ≤ 3. For H > 3, we considered three ways of separating an infeasible solution: the

ε-mincut algorithm, solving the lbcutM model, and the lbcutA algorithm. The ε-mincut

algorithm is a heuristic, and the last two are exact separation techniques. Note that we

can also run the lbcutM model and the lbcutA algorithm as heuristics by enforcing a time

limit. We refer to these heuristics as lbcutM-h(t) and lbcutA-h(t), respectively, where t is

the time limit in seconds.

In our preliminary experiments, we observed several instances getting stuck at the root

node, not improving the lower bound significantly for many iterations. To prevent this

phenomenon, we implemented a tailing-off rule (Sherali and Driscoll 2000). If the improve-

ment of the best bound is not significant in the last two iterations at the root node, we

then resort to branching rather than spend more time in the corner of the polytope where

the algorithm is stuck.

If we cannot identify a violation with our heuristic methods, we then resort to one of

our exact separation techniques: lbcutM or lbcutA. Since the separation problem itself is
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Table 1 Properties of instance sets

Hmin

Set |N | |A| |R| # min avg max

C-1 100 342 5 20 3 4.7 7

C-2 100 342 10 20 4 5.4 7

C-3 400 1482 5 20 3 4.7 7

C-4 400 1482 10 20 4 5.05 7

C-5 400 1482 20 20 4 5.75 7

C-6 900 3422 5 20 3 4.65 7

C-7 900 3422 10 20 4 5.4 7

C-8 900 3422 20 20 4 5.6 7

C-9 900 3422 30 20 4 5.9 7

D-1 25 72 10 10 3 3.8 4

D-2 49 156 10 10 4 5.2 6

D-3 100 342 10 10 7 8.2 9

D-4 100 342 45 10 6 8.1 9

D-5 400 1482 10 10 12 14.6 18

E-1 50 122 10 5 6 7.6 9

E-2 50 122 45 5 7 8.6 11

E-3 50 245 10 5 4 4.6 6

E-4 50 245 45 5 4 4.8 6

E-5 75 277 10 5 5 5.6 6

E-6 75 277 45 5 6 8.6 12

E-7 75 555 10 5 3 4.4 6

E-8 75 555 45 5 4 4.6 5

E-9 100 495 10 5 5 5.2 6

E-10 100 495 45 5 6 7.2 9

E-11 100 990 10 5 3 4.0 5

E-12 100 990 45 5 3 4.8 6

R-1 50 122 10 5 3 4.6 6

R-2 50 122 45 5 4 5.2 6

R-3 50 245 10 5 2 2.8 3

R-4 50 245 45 5 3 3.0 3

R-5 75 277 10 5 3 3.8 4

R-6 75 277 45 5 4 4.2 5

R-7 75 555 10 5 2 2.6 3

R-8 75 555 45 5 2 2.8 3

R-9 100 495 10 5 3 3.6 5

R-10 100 495 45 5 4 4.0 4

R-11 100 990 10 5 2 2.0 2

R-12 100 990 45 5 3 3.0 3
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NP-hard, solution can potentially take a very long time. Therefore, rather than searching

for violations in all OD pairs exactly, we search until we detect a single violation. When

such a violation is identified, we add a cut, stop the search process for further violations in

the remaining set of OD pairs and use the generated cut to separate the solution at hand.

We refer to this technique as quick-exit.

We used all separation algorithms for both integer and fractional solutions. We separated

fractional solutions only at the root node. We also implemented very aggressive probing

(Savelsbergh 1994) at the root node.

4.3. Hybrid heuristic

To better understand the impact of each solution technique, we ran over a million separa-

tion problems on a randomly selected subset of instances from all four C, D, E and R sets.

Figure 2 plots the cumulative percentage of separation instances solved versus time. We

observed that the solution of the lbcutM model and the lbcutA algorithm show different

progress in time for the same separation problem instance. The lbcutA algorithm performs

well on the majority of instances and can solve more than 90% of them within 0.01 second.

However it performs very poorly on the remaining instances: 99.87% were solved within

60 seconds (not shown in the figure) and the last 0.12% took longer times, reaching over

an hour. The performance of the lbcutM model on the other hand is inferior to that of

the lbcutA algorithm on 95% of the instances. However it can solve all instances within 15
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Figure 3 Average solution time of the separation problem for varying threshold times

seconds. Therefore, we combined the two solution techniques to benefit from their strong

sides. We refer to this combination as a hybrid algorithm: we first let lbcutA algorithm run

for a given time threshold and if the algorithm cannot identify a cut or conclude that none

exists, we switch to lbcutM model. Figure 3 plots the average solution time of a single sep-

aration problem for varying threshold values. For a threshold of zero, which means running

only the lbcutM model, the average separation problem solution time is 0.015 seconds. If

the threshold value is infinity, which means running the lbcutA algorithm only, the average

solution time increases to over 0.5 seconds. A threshold value of 0.016 seconds gives to

minimum average separation problem solution time of 0.0078 seconds for the considered

set of separation problem instances.

4.4. Experimental Setting

Each set in C, D, E and R classes include 20, 10, five and five instances, respectively (Table

1), totaling 350 instances. Following the convention used in the related literature, we used

the same hop limit for all demands for a given problem instance. For each instance, we

tested (Hp,Hb)=(Hmin+∆p,Hmin+∆p+∆b) for all ∆p,∆b ∈ {0,1,2}. In other words, there

are nine different settings for each of the 350 instances shown in Table 1, totaling 3150

problem instances, 2070 of which have grid graphs and the remaining 1080 have random

graphs.

In our preliminary analyses, we observed that the NF performance is much inferior to

that of FF, being slower by orders of magnitude. For example, an instance that can be
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solved by FF in three seconds at the root node, can only be solved by NF in 695 seconds

after exploring 12743 nodes of the branch-and-bound tree. Note that, as previously dis-

cussed, FF is also theoretically stronger than NF. Therefore, in our experimental settings,

we only tested FF by using three types of branch-and-cut implementations, as shown in

Table 2. The first two columns provide a grouping of implementations and their names. In

the first group, we investigate the performances of the three separation algorithms. In the

second group, we test the effect of time limit for lbcutM. In the final group, we test the best

combination. The next three columns show the heuristic algorithms. If the ε-mincut algo-

rithm is implemented, then there is a tick in the third column. If the lbcutM-h or lbcutA-h

are implemented, then the time limit is shown in the associated column. An empty entry

implies that the algorithm was not implemented for the associated version of the B&C.

The following two columns show the exact algorithm. In the rightmost three columns, ε

depicts the tailing-off parameter as percentage, ‘quick-exist’ implementation and the time

threshold to minimize the generated cut using the lbcutM model.

Table 2 Experimental settings

Group Name Heuristic Algorithms Exact Alg. Additional Settings

ε-mincut lbcut-A-h(t) lbcutM-h(t) lbcutM lbcutA ε (%) quick-exit min-lbcutM(t)

1 B&C-1 0.1 t = 0.5

1 B&C-2 t = 0.5 0.1 t = 0.5

1 B&C-3 t = 0.5 0.1 t = 0.5

2 B&C-4 t = 0.1 0.1 t = 0.1

2 B&C-5 t = 0.5 0.1 t = 0.5

2 B&C-6 t = 1.0 0.1 t = 1.0

3 B&C-7 t = 0.016 t = 0.1 0.01 t = 0.1

4.5. Results for Single Edge Failures

As in previous studies on NDPVC, when reporting the results, we assign 7200 seconds

to those instances exceeding this time limit and an optimality gap of 100% if no feasible

solution could be found within the time limit. All the results reported in this study are

available as an online supplement. The summary of results for single edge failures are

presented in Table 3. Each line in the table corresponds to 3150 problem instances. The

first two columns are the grouping and the names of implementations. The remaining set
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of columns reports the average run time in seconds (‘avgTime’), the average percentage

optimality gap (‘avgGap’), the number of instances solved (‘nSolved’), and the average

number of cuts generated per instance (‘nCuts’).

Table 3 Results for single edge failures

Group Name avgTime (s) avgGap (%) nSolved nCuts

1 B&C-1 903.97 1.51% 2846 1595.35

1 B&C-2 1085.82 2.04% 2829 1662.40

1 B&C-3 714.02 1.53% 2967 981.39

2 B&C-4 582.44 1.18% 2974 1259.70

2 B&C-5 634.76 1.28% 2968 1122.57

2 B&C-6 728.78 1.65% 2973 1061.45

3 B&C-7 569.36 1.37% 3008 1269.20

Our first observation from Table 3 is that the minimum number of solved problem

instances is 2829 by B&C-2 and the maximum number is 3008 by B&C-7. Looking at the

three implementations in the first group, we observe that the lbcutM-h model performs

better than the ε-mincut and lbcutA-h algorithms. A total of 2967 instances are solved,

which is the best of the first three implementations. Furthermore, the average solution time

is also the minimum of the first group. The main reason for this result is the following:

as previously discussed, the lbcutA-h algorithm is efficient, but it gets stuck at a small

fraction of instances, resulting in inefficiencies. This adversely affects the overall solution

process. The implementation with ε-mincut, on the other hand, generates cuts faster than

the lbcutM-h heuristic. However, when it cannot identify a cut and there exists a length

bounded cut, it then needs to resort to the costly lbcutM. Therefore, in the second group,

we tested the ε-mincut and the lbcutM-h models running in tandem with 0.1, 0.5 and

1.0 second of time limit for the lbcutM-h. The results of the second group show that

applying the two heuristics together improves the solution times and the number of solved

instances. Furthermore, adding the quick-exit feature also improves the solution process.

The best performing configuration is obtained when lbcutM-h runs for 0.1 second, yielding

the minimum average run time, the minimum average gap and the maximum number

of instances solved. Finally, in the third group, we tested the hybrid heuristic. We also
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reduced the tailing-off parameter from 0.1% to 0.01%, which increased the number of solved

instances from 2974 in B&C-4 to 3008 in B&C-7. After determining the best parameters

and settings, the following tests were carried out using B&C-7 implementation.
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Figure 5 Percentage of the 3150 total instances solved by Gouveia and Leitner (2017a), Gouveia, Joyce-Moniz,

and Leitner (2018) and our FF-B&C-7

Figure 4 plots the number of instances solved versus time for B&C-7. In the first 100

seconds, our formulation could solve 2098 instances. Overall, 2500 instances were solved in

230 seconds, and 2750 instances were solved in 600 seconds. Within the given 7200 seconds

time limit, our model could solve 3008 instances. In Gouveia and Leitner (2017a), which
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we abbreviate as GL, the authors report that out of 2070 grid instances and 1080 random

instances, their best model H3 solves 781 of the grid instances and 250 of the random

instances. This amounts to 1031 instances in total. In Gouveia, Joyce-Moniz, and Leitner

(2018), which we abbreviate as GJL, the authors solved 1226 of the grid instances and 717 of

the random instances, totaling 1943 instances (Figure 5), using their best implementation

(BC3). We therefore increased the number of solved instances from the previous record of

1943 to 3008. Even though the computers on which the experiments were carried out are

not the same, the difference in the number of solved instances is significant between our

implementations and the state-of-the-art algorithms. One of the main reasons for this result

is the tighter linear programming (LP) relaxations we obtain by FF. To better illustrate

this point, we compare the LP relaxations of the FF to the tightest formulation in Gouveia

and Leitner (2017a), which is H3, on 2352 feasible instances. The average optimality gap

of the LP relaxations are 2.48% and 19.09% for FF and H3, respectively. However, there

is no strict dominance of one formulation over the other, the H3 formulation provides a

better bound on 34 of the considered instances.

Table 4 Performance of separation algorithms on B&C-7

Algorithm avgTimePerIns (s) avg#CutPerIns

lbcut3 0.01 7.83

ε-MinCut 3.94 348.45

lbcutA-h 66.52 425.06

lbcutM-h 130.66 487.76

lbcutM 86.74 0.11

Total 287.88 1269.20

Table 4 shows the performance of the separation algorithms on our B&C-7 implementa-

tion. The first column indicates the used separation algorithm, the second column shows

the average run time per NDPVC instance in seconds and the last column indicates the

average number of violated cuts generated per NDPVC instance. The lbcut3 algorithm is

only implemented for hop bounds of at most three. Therefore, the number of violated cuts

generated is small when averaged over all instances. The main bulk of the cuts, more than

99%, are generated by the three heuristic algorithms, ε-MinCut, lbcutA-h and lbcutM-

h. The fastest heuristic is the ε-MinCut. In B&C-7 implementation, the lbcutA-h and
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lbcutM-h heuristics run at most for 0.016 and 0.1 seconds, respectively. The lbcutM is the

last resort if all of the heuristics fail to find a violated cut. It is mainly used for proof of

optimality. In very rare cases, it can identify a violated cut too. On average, 0.11 viola-

tion is identified per instance, meaning that, a violated cut is identified by the lbcutM in

every 8.96 instance. The average solution time is 569.36 seconds (Table 3) and the average

separation time is 287.88 seconds, which accounts to 50.56% of the average solution time.

Table 5 depicts the results of BC3 reported by Gouveia et al. (2018) and our B&C-7,

grouped by sets. Our model solves all instances in the majority of the sets. Those that

we could not solve completely are the largest graphs in the same letter group with the

largest number of OD pairs. The average runtime and the average optimality gap are also

improved over the BC3 model. Table 6 reports the same results grouped by hop limits.

In all letter groups, the instances with larger hop bounds are harder to solve. However,

the performance of our implementation for larger hop bounds is better than that of the

BC3 model. The main reason is that the previous model of Gouveia et al. (2018) the

variables have an index associated with the hop bound. Therefore, increasing hop bounds

significantly increases the number of variables. In contrast, increasing the hop bound does

not affect the number of variables in the FF model. To test the efficiency of our model as

a function of the hop bound, we solved the case with hop limits of ∆p = ∆b = 5 implying

Hp =Hmin + 5 and Hb =Hmin + 10. The results are reported in Table 7. We were able to

solve 317 of the 350 instances, over 90%, and the average solution time and average gap

with respect to previous results were not significantly affected. Note that the hop bounds

are more relaxed with respect to the previous experiments, however they still affect the

optimal solutions. When compared to the optimal costs of the network design with two

disjoint paths without hop bounds, the costs are still higher in 241 of the 350 instances.

4.6. Results for Multi-Edge Failures

Another strong side of our formulation is its flexibility for solving instances in which k≥ 3.

We tested or model for k= 2, . . . ,6, and the results are reported in Table 8. The first three

columns report k, the set name and the number of instances in the set. The following

four columns show the number of solved instances, number of infeasible instances, average

time in seconds and average gap as percentage in the given order. Our model can solve

95.49%, 92.25%, 91.08%, 90.41%, and 96.19% of the total 3150 instances for k = 2, . . . ,6,

respectively. The average run time is 693 seconds and the average gap is 2.28%, which
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Table 5 Comparison of Flexible model with B&C-7 implementation, summarized by category

(Gouveia et al. 2018) - BC3 FM (B&C-7)

Set # # avgTime avgGap # avgTime avgGap

solved (s) (%) solved (s) (%)

C-1 180 175 522 1 180 17.2 0.00

C-2 180 121 2854 11 180 86.0 0.00

C-3 180 165 916 4 180 17.2 0.00

C-4 180 120 2746 12 180 42.0 0.00

C-5 180 39 5756 48 169 765.2 0.41

C-6 180 164 845 3 180 19.7 0.00

C-7 180 108 3240 18 180 48.8 0.00

C-8 180 60 4951 43 180 138.6 0.00

C-9 180 21 6465 67 164 1020.7 0.56

D-1 90 90 6 0 90 7.0 0.00

D-2 90 90 144 0 90 21.0 0.00

D-3 90 50 4057 35 90 119.4 0.00

D-4 90 22 6087 70 81 1588.7 1.33

D-5 90 1 7120 99 60 3421.7 17.44

E-1 45 45 110 0 45 7.6 0.00

E-2 45 40 1599 4 45 26.1 0.00

E-3 45 44 470 0 45 20.9 0.00

E-4 45 21 4383 24 45 240.7 0.00

E-5 45 41 1315 2 45 25.2 0.00

E-6 45 10 5759 67 45 245.2 0.00

E-7 45 32 2894 21 45 64.8 0.00

E-8 45 15 5211 57 38 2130.5 1.11

E-9 45 36 2227 10 45 42.5 0.00

E-10 45 9 6028 76 44 1141.7 0.05

E-11 45 23 4074 39 45 209.8 0.00

E-12 45 9 6050 75 20 4623.3 32.91

R-1 45 45 64 0 45 16.3 0.00

R-2 45 38 1969 2 45 106.5 0.00

R-3 45 45 92 0 45 29.1 0.00

R-4 45 27 3404 12 45 689.4 0.00

R-5 45 45 173 0 45 26.7 0.00

R-6 45 22 4172 22 45 932.4 0.00

R-7 45 42 935 3 45 77.9 0.00

R-8 45 20 4557 35 30 3226.8 6.73

R-9 45 40 1314 8 45 53.8 0.00

R-10 45 14 5296 46 34 3083.6 3.89

R-11 45 42 1027 3 45 85.8 0.00

R-12 45 12 5508 52 28 3812.2 9.70

Total/Avg 3150 1943 3158 29 3008 569.4 1.37
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Table 6 Comparison of Flexible Model with B&C-7 implementation summarized by hop-limit

(Gouveia et al. 2018) - BC3 FM (B&C-7)

Set (∆p,∆b) # # avgTime avgGap # avgTime avgGap

solved (s) (%) solved (s) (%)

C (0,0) 180 151 1272 7 180 23.3 0.00

(0,1) 180 120 2687 17 180 81.4 0.00

(0,2) 180 89 4250 30 178 231.4 0.02

(1,0) 180 141 1726 10 180 91.2 0.00

(1,1) 180 107 3283 23 176 236.3 0.05

(1,2) 180 68 4951 42 174 368.2 0.19

(2,0) 180 136 2026 14 179 202.8 0.01

(2,1) 180 93 3750 27 174 368.2 0.22

(2,2) 180 68 5191 48 172 552.4 0.48

D (0,0) 50 40 2734 29 50 201.2 0.00

(0,1) 50 29 4665 54 49 335.8 1.06

(0,2) 50 22 6051 77 48 565.4 0.63

(1,0) 50 35 3133 34 47 800.3 4.29

(1,1) 50 26 5166 63 45 1150.2 3.76

(1,2) 50 22 6034 80 44 1156.4 2.61

(2,0) 50 34 3528 39 45 1441.5 8.40

(2,1) 50 23 5572 71 41 1765.7 8.32

(2,2) 50 22 6704 90 42 1867.4 4.70

E (0,0) 60 58 709 7 60 42.9 0.00

(0,1) 60 42 4094 38 58 363.9 0.16

(0,2) 60 25 6537 70 59 351.6 0.05

(1,0) 60 50 2060 21 58 547.9 3.33

(1,1) 60 34 4873 48 55 886.6 1.99

(1,2) 60 20 6980 75 54 992.9 1.98

(2,0) 60 49 2555 27 55 1061.0 6.87

(2,1) 60 30 5258 55 54 1215.8 6.97

(2,2) 60 17 7104 80 54 1120.9 4.18

R (0,0) 60 55 748 2 60 14.5 0.00

(0,1) 60 41 2676 15 60 221.2 0.00

(0,2) 60 29 4898 37 60 154.4 0.00

(1,0) 60 58 409 0 59 574.5 0.37

(1,1) 60 39 2826 18 51 1611.7 3.27

(1,2) 60 29 4420 37 55 1068.6 0.92

(2,0) 60 60 114 0 51 1757.7 4.02

(2,1) 60 47 2367 10 49 1986.2 4.33

(2,2) 60 34 4684 39 52 1716.6 2.32

Total/Avg 3150 1943 3158 29 3008 569.4 1.37
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Table 7 Results of Flexible Model with B&C-7 implementation for (∆p
H ,∆b

H)=(5,5)

Set # # solved avgTime (s) avgGap (%)

C 180 156 1253.9 3.24

D 50 42 1677.5 9.58

E 60 60 333.3 0.00

R 60 59 654.3 0.10

Total/Avg 350 317 1053.8 3.05

are insignificantly affected by increasing k. Note that increasing k changes not only the

right-hand side of Constraints (5) but also the optimal objective function value. Therefore,

depending on instance, the LP relaxations might be tighter or weaker for increasing k. Note

that increasing k obviously yields more infeasible instances. Figure 6 plots the percentage of

infeasible instances for k= 2, . . . ,6. When k= 6, only 16.67% of the instances are feasible.

Figure 7 plots the average cost of network design for the 382 instances which we found

the optimal solution for all k≤ 6. Even though the vertical axis has no monetary measure,

we observe a strong relationship between the cost and k. Each unit increase in k implies

around 200 units increase in cost, which is half the design cost for k= 2.
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Figure 6 Percentage of infeasible solutions for varying number of edge failures

4.7. Comparison to the k-HSNDP

Similar to previous studies, we compare the results of NDPVC with those of the k-HSNDP.

We recall that the k-HSNDP requires the primal and backup paths to be edge-disjoint. The
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Table 8 Results of Flexible Model with B&C-7 implementation for k = 2, . . . ,6

k Set # # solved # inf. avgTime (s) avgGap (%)

2 C 1620 1593 0 239.5 0.11

D 450 411 4 1031.5 3.75

E 540 507 70 731.5 2.84

R 540 497 31 1011.7 1.69

3 C 1620 1545 49 480.9 0.27

D 450 382 20 1509.0 9.08

E 540 488 167 1008.3 4.02

R 540 491 117 1041.6 1.38

4 C 1620 1529 500 532.9 0.25

D 450 365 172 1761.7 12.66

E 540 492 262 888.6 4.58

R 540 483 214 1087.7 1.41

5 C 1620 1497 500 693.1 0.21

D 450 355 172 1912.4 16.31

E 540 498 312 745.1 2.34

R 540 498 273 782.0 1.04

6 C 1620 1620 1542 6.2 0.00

D 450 408 408 676.5 8.78

E 540 498 362 658.1 1.66

R 540 504 313 658.7 0.83

Total/Avg 15750 14661 5488 693.0 2.28

k-HSNDP results are provided to us by Gouveia et al. (2018). Out of 3150 instances, there

are 2494 optimal, 106 infeasible, 451 feasible and 99 unknown instances. Using the upper

bounds we obtained by FF, we compare 2551 instances of NDPVC with the k-HSNDP,

for which both results are known. The results summarized by category and by hop-limit

are shown in Tables 9 and 10, respectively. There are at least 1080 instances for which the

cost of network design by the NDPVC is strictly less expensive than that of the k-HSNDP.

Equal costs are observed in 1470 instances and one instance is shown to be feasible in



27

1 2 3 4 5
0

400

800

1,200

1,600

2,000

424.8
634.4

871.0

1,152.8

1,464.9

Number of edge failures (k− 1)

N
et

w
or

k
d

es
ig

n
co

st

Figure 7 Average network design cost (objective function) to hedge against varying number of edge failures

NDPVC whereas it is infeasible in k-HSNDP. Note that we correct a few misreported

numbers in the results by Gouveia et al. (2018).

5. Conclusions

We have developed a flexible natural model for the network design problem with vulner-

ability constraints (NDPVC), introduced by Gouveia and Leitner (2017a). This problem

constitutes a new facet of the survivable network design problem by accounting for the fact

that the classical network design problem with disjoint paths is a conservative approach

to survivability. In the new problem definition, the concept of vulnerability is described as

as hedging against a given number of ‘failing edges’. In their solution approach for single

edge failures, Gouveia and Leitner developed a flow-based model and used flow conserva-

tion constraints together with a ‘layered’ network construct to solve the problem. Gouveia

et al. (2018) improve on the previous results by developing branch-and-cut algorithm. We

have introduced an alternative model based on the notion of length-bounded cuts, which

is more flexible for the problem with a general number of edge failures. Using only the

natural variables, our implementation scales efficiently on larger networks. We can solve

more than 95% of the benchmark instances for single-edge failures within a two-hour time

limit. For larger numbers of edge failures, our model solves over 90% of the instances within

the same time limit.
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Table 9 Comparison of the NDPVC results with those of k-HSNDP summarized by category

Set # bt eq feas

C-1 180 56 124 0

C-2 180 64 111 0

C-3 180 26 154 0

C-4 180 69 111 0

C-5 180 82 51 0

C-6 180 25 155 0

C-7 180 46 134 0

C-8 180 87 85 0

C-9 180 65 50 0

D-1 90 44 45 0

D-2 90 58 30 0

D-3 90 67 23 0

D-4 90 58 2 0

D-5 90 56 5 0

E-1 45 7 29 0

E-2 45 15 9 0

E-3 45 24 15 0

E-4 45 18 1 0

E-5 45 22 12 0

E-6 45 19 2 1

E-7 45 12 32 0

E-8 45 8 3 0

E-9 45 26 14 0

E-10 45 8 1 0

E-11 45 15 20 0

E-12 45 4 1 0

R-1 45 9 32 0

R-2 45 23 10 0

R-3 45 7 36 0

R-4 45 7 11 0

R-5 45 10 32 0

R-6 45 7 6 0

R-7 45 8 33 0

R-8 45 5 9 0

R-9 45 8 33 0

R-10 45 6 5 0

R-11 45 4 38 0

R-12 45 5 6 0

Total 3150 1080 1470 1
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Table 10 Comparison of the NDPVC results with those of k-HSNDP summarized by hop-limit

Set (∆p,∆b) # bt eq feas

C (0,0) 180 23 157 0

(0,1) 180 111 67 0

(0,2) 180 120 55 0

(1,0) 180 17 153 0

(1,1) 180 60 107 0

(1,2) 180 85 77 0

(2,0) 180 12 148 0

(2,1) 180 40 114 0

(2,2) 180 52 97 0

D (0,0) 50 16 29 0

(0,1) 50 48 0 0

(0,2) 50 46 2 0

(1,0) 50 36 11 0

(1,1) 50 38 7 0

(1,2) 50 40 5 0

(2,0) 50 18 20 0

(2,1) 50 20 15 0

(2,2) 50 21 16 0

E (0,0) 60 4 14 0

(0,1) 60 43 3 1

(0,2) 60 40 6 0

(1,0) 60 20 16 0

(1,1) 60 19 16 0

(1,2) 60 20 16 0

(2,0) 60 10 23 0

(2,1) 60 11 21 0

(2,2) 60 11 24 0

R (0,0) 60 1 30 0

(0,1) 60 26 28 0

(0,2) 60 27 28 0

(1,0) 60 4 41 0

(1,1) 60 13 22 0

(1,2) 60 11 24 0

(2,0) 60 7 25 0

(2,1) 60 4 26 0

(2,2) 60 6 27 0

Total 3150 1080 1470 1
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Fortz B, Labbé M (2002) Polyhedral results for two-connected networks with bounded rings. Mathematical

Programming 93(1):27–54.
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