Organic Rankine Cycle (ORC) turbines usually operate in thermodynamic regions characterized by high-pressure ratios and strong non-ideal gas effects, complicating the aerodynamic design significantly. Systematic optimization methods accounting for multiple uncertainties due to variable operating conditions, referred to as Robust Optimization may benefit to ORC turbines aerodynamic design. This study presents an original and fast robust shape optimization approach to overcome the limitation of a deterministic optimization that neglects operating conditions variability, applied to a well-known supersonic turbine nozzle for ORC applications. The flow around the blade is assumed inviscid and adiabatic and it is reconstructed using the open-source SU2 code. The non-ideal gasdynamics is modeled through the Peng-Robinson-Stryjek-Vera equation of state. We propose here a mono-objective formulation which consists in minimizing the α-quantile of the targeted Quantity of Interest (QoI) under a probabilistic constraint, at a low computational cost. This problem is solved by using an efficient robust optimization approach, coupling a state-of-the-art quantile estimation and a classical Bayesian optimization method. First, the advantages of a quantile-based formulation are illustrated with respect to a conventional mean-based robust optimization. Secondly, we demonstrate the effectiveness of applying this robust optimization framework with a low-fidelity inviscid solver by comparing the resulting optimal design with the ones obtained with a deterministic optimization using a fully turbulent solver.

Quantile-based robust optimization of a supersonic nozzle for organic rankine cycle turbines

Persico G.;Gori G.;
2020

Abstract

Organic Rankine Cycle (ORC) turbines usually operate in thermodynamic regions characterized by high-pressure ratios and strong non-ideal gas effects, complicating the aerodynamic design significantly. Systematic optimization methods accounting for multiple uncertainties due to variable operating conditions, referred to as Robust Optimization may benefit to ORC turbines aerodynamic design. This study presents an original and fast robust shape optimization approach to overcome the limitation of a deterministic optimization that neglects operating conditions variability, applied to a well-known supersonic turbine nozzle for ORC applications. The flow around the blade is assumed inviscid and adiabatic and it is reconstructed using the open-source SU2 code. The non-ideal gasdynamics is modeled through the Peng-Robinson-Stryjek-Vera equation of state. We propose here a mono-objective formulation which consists in minimizing the α-quantile of the targeted Quantity of Interest (QoI) under a probabilistic constraint, at a low computational cost. This problem is solved by using an efficient robust optimization approach, coupling a state-of-the-art quantile estimation and a classical Bayesian optimization method. First, the advantages of a quantile-based formulation are illustrated with respect to a conventional mean-based robust optimization. Secondly, we demonstrate the effectiveness of applying this robust optimization framework with a low-fidelity inviscid solver by comparing the resulting optimal design with the ones obtained with a deterministic optimization using a fully turbulent solver.
APPLIED MATHEMATICAL MODELLING
Blade shape optimization; Gaussian-processes; Quantile; Robust optimization; Surrogate-based optimization; Uncertainty quantification
File in questo prodotto:
File Dimensione Formato  
134-AMM_ROBOPT.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
RAZAN_OA_01-20.pdf

embargo fino al 08/02/2022

Descrizione: Paper Open Access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 6.66 MB
Formato Adobe PDF
6.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1135326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact