Glaucoma is a multifactorial optic neuropathy characterized by progressive loss of retinal ganglion cells, changes in optic disk morphology and visual field defects; its pathophysiology is still unclear. Recently it was demonstrated that glaucoma can be associated with a degenerative effect at the level of the optic nerve and the primary visual cortex. Functional near infrared spectroscopy (fNIRS) is a non-invasive optical technique, which allows the brain hemodynamic monitoring. In particular, the Time Domain fNIRS (TD-fNIRS) allows to remove from the detected signal the contribution coming from the surface (scalp, skull and cerebral fluid) in order to obtain the brain hemodynamic activation. The aim of this preliminary study is to understand if in the glaucomatous patients, the visual cortex activation during a visual stimulus is different from the one of a control group. A total of 20 subjects took part to the study. We divided them into three groups: 7 controls, 5 ocular hypertension (HYPER), and 8 glaucoma. The hemodynamic time courses of oxy-(OHB) and deoxy-(HHB) hemoglobin were compared with a hemodynamic response function (HRF) with the adaptive HRF approach. Finally, an inference test was applied (t-student) to statistically determine the visual cortex activation (simultaneous increase in OHB and decrease in HHB). The p-value threshold was set at 0.05. The 86% of the controls and the 80% of the HYPER combinations are activated; while the 81% of the glaucoma ones are not, outlining a well-defined trend. Also the OHB and HHB show drastic differences between controls and patients. © 2019 SPIE.

TD-fNIRS for diagnosing glaucoma: A clinical pilot study

Re R.;Spinelli L.;Pirovano I.;Contini D.;Cubeddu R.;Torricelli A.
2019-01-01

Abstract

Glaucoma is a multifactorial optic neuropathy characterized by progressive loss of retinal ganglion cells, changes in optic disk morphology and visual field defects; its pathophysiology is still unclear. Recently it was demonstrated that glaucoma can be associated with a degenerative effect at the level of the optic nerve and the primary visual cortex. Functional near infrared spectroscopy (fNIRS) is a non-invasive optical technique, which allows the brain hemodynamic monitoring. In particular, the Time Domain fNIRS (TD-fNIRS) allows to remove from the detected signal the contribution coming from the surface (scalp, skull and cerebral fluid) in order to obtain the brain hemodynamic activation. The aim of this preliminary study is to understand if in the glaucomatous patients, the visual cortex activation during a visual stimulus is different from the one of a control group. A total of 20 subjects took part to the study. We divided them into three groups: 7 controls, 5 ocular hypertension (HYPER), and 8 glaucoma. The hemodynamic time courses of oxy-(OHB) and deoxy-(HHB) hemoglobin were compared with a hemodynamic response function (HRF) with the adaptive HRF approach. Finally, an inference test was applied (t-student) to statistically determine the visual cortex activation (simultaneous increase in OHB and decrease in HHB). The p-value threshold was set at 0.05. The 86% of the controls and the 80% of the HYPER combinations are activated; while the 81% of the glaucoma ones are not, outlining a well-defined trend. Also the OHB and HHB show drastic differences between controls and patients. © 2019 SPIE.
2019
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
978-151062841-0
brain imaging; clinical spectroscopy; glaucoma; near infrared spectroscopy; Time domain; visual cortex; Brain imaging; Functional near-infrared spectroscopy (fnirs); glaucoma; Hemodynamic monitoring; Hemodynamic response functions; Non-invasive optical techniques; Time domain; Visual cortexes
File in questo prodotto:
File Dimensione Formato  
Binder_Re_Glauoma.pdf

accesso aperto

: Publisher’s version
Dimensione 276.25 kB
Formato Adobe PDF
276.25 kB Adobe PDF Visualizza/Apri
ECBO_Re_v2.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 199.15 kB
Formato Adobe PDF
199.15 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1126035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact