The classical Faber-Krahn inequality states that, among all domains with given measure, the ball has the smallest first Dirichlet eigenvalue of the Laplacian. Another inequality related to the first eigenvalue of the Laplacian has been proved by Lieb in 1983 and it relates the first Dirichlet eigenvalues of the Laplacian of two different domains with the first Dirichlet eigenvalue of the intersection of translations of them. In this paper we prove the analogue of Faber-Krahn and Lieb inequalities for the composite membrane problem.

Faber-Krahn and Lieb-type inequalities for the composite membrane problem

Vecchi E.
2019-01-01

Abstract

The classical Faber-Krahn inequality states that, among all domains with given measure, the ball has the smallest first Dirichlet eigenvalue of the Laplacian. Another inequality related to the first eigenvalue of the Laplacian has been proved by Lieb in 1983 and it relates the first Dirichlet eigenvalues of the Laplacian of two different domains with the first Dirichlet eigenvalue of the intersection of translations of them. In this paper we prove the analogue of Faber-Krahn and Lieb inequalities for the composite membrane problem.
2019
Composite membrane problem; Eigenvalue; Faber-Krahn inequality; Lieb inequality; Rearrangement
File in questo prodotto:
File Dimensione Formato  
Cupini_Vecchi_CPAA.pdf

Accesso riservato

: Publisher’s version
Dimensione 360.91 kB
Formato Adobe PDF
360.91 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1125521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact