The combined approach of gas phase IR-UV ion dip spectroscopy experiments and DFT-based molecular dynamics simulations for theoretical spectroscopy reveals the 3D structures of (Ac-Phe-OMe)1,2 peptides using their far-IR/THz signatures. Both experimental and simulated IR spectra are well-resolved in the 100-800 cm-1 domain, allowing an unambiguous assignment of the conformers, that could not be achieved in other more congested spectral domains. We also present and make proofs-of-principles for our newly developed theoretical method for the assignment of (anharmonic) vibrational modes from MD simulations based on graph theory coupled to APT-weighted internal coordinates velocities DOS spectra. The principles of the method are reviewed, applications to the simple gas phase water and NMA (N-methyl-acetamide) molecules are presented, and application to the more complex (Ac-Phe-OMe)1,2 peptidic systems shows that the complexity in assigning vibrational modes from MD simulations is reduced with the graphs. Our newly developed graph-based methodology is furthermore shown to allow an easy comparison between the vibrational modes of isolated monomer(s) and their complexes, as illustrated by the (Ac-Phe-OMe)1,2 peptides.

Conformational assignment of gas phase peptides and their H-bonded complexes using far-IR/THz: IR-UV ion dip experiment, DFT-MD spectroscopy, and graph theory for mode assignment

Tommasini M.;
2019

Abstract

The combined approach of gas phase IR-UV ion dip spectroscopy experiments and DFT-based molecular dynamics simulations for theoretical spectroscopy reveals the 3D structures of (Ac-Phe-OMe)1,2 peptides using their far-IR/THz signatures. Both experimental and simulated IR spectra are well-resolved in the 100-800 cm-1 domain, allowing an unambiguous assignment of the conformers, that could not be achieved in other more congested spectral domains. We also present and make proofs-of-principles for our newly developed theoretical method for the assignment of (anharmonic) vibrational modes from MD simulations based on graph theory coupled to APT-weighted internal coordinates velocities DOS spectra. The principles of the method are reviewed, applications to the simple gas phase water and NMA (N-methyl-acetamide) molecules are presented, and application to the more complex (Ac-Phe-OMe)1,2 peptidic systems shows that the complexity in assigning vibrational modes from MD simulations is reduced with the graphs. Our newly developed graph-based methodology is furthermore shown to allow an easy comparison between the vibrational modes of isolated monomer(s) and their complexes, as illustrated by the (Ac-Phe-OMe)1,2 peptides.
File in questo prodotto:
File Dimensione Formato  
faraday-discussions-submitted.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF Visualizza/Apri
11311-1124938_Tommasini.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1124938
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact