We discover a large class of simple affine vertex algebras Vk (g), associated to basic Lie superalgebras g at non-admissible collapsing levels k, having exactly one irreducible g-locally finite module in the category O. In the case when g is a Lie algebra, we prove a complete reducibility result for Vk(g)-modules at an arbitrary collapsing level. We also determine the generators of the maximal ideal in the universal affine vertex algebra Vk (g) at certain negative integer levels. Considering some conformal embeddings in the simple affine vertex algebras V-1/2 (Cn) and V-4(E7), we surprisingly obtain the realization of non-simple affine vertex algebras of types B and D having exactly one nontrivial ideal.

An Application of Collapsing Levels to the Representation Theory of Affine Vertex Algebras

P. Moseneder Frajria;
2020-01-01

Abstract

We discover a large class of simple affine vertex algebras Vk (g), associated to basic Lie superalgebras g at non-admissible collapsing levels k, having exactly one irreducible g-locally finite module in the category O. In the case when g is a Lie algebra, we prove a complete reducibility result for Vk(g)-modules at an arbitrary collapsing level. We also determine the generators of the maximal ideal in the universal affine vertex algebra Vk (g) at certain negative integer levels. Considering some conformal embeddings in the simple affine vertex algebras V-1/2 (Cn) and V-4(E7), we surprisingly obtain the realization of non-simple affine vertex algebras of types B and D having exactly one nontrivial ideal.
2020
File in questo prodotto:
File Dimensione Formato  
akmpp-collapsing-revised-final.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 456 kB
Formato Adobe PDF
456 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1124232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact