Adamović D. et al. () "An application of collapsing levels to the representation theory of affine vertex algebras,"
International Mathematics Research Notices, Vol., Article ID, 37 pages.
doi:10.1093/imrn/

An application of collapsing levels to the representation theory of affine vertex algebras

Dražen Adamović ${ }^{1}$, Victor G. Kac ${ }^{2}$, Pierluigi Möseneder Frajria ${ }^{3}$, Paolo Papi ${ }^{4}$ and Ozren Perše ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia, ${ }^{2}$ Department of Mathematics, MIT, 77 Mass. Ave, Cambridge, MA 02139, USA, ${ }^{3}$ Politecnico di Milano, Polo regionale di Como, Via Valleggio 11, 22100 Como, Italy and ${ }^{4}$ Dipartimento di Matematica, Sapienza Università di Roma, P.le A. Moro 2, 00185, Roma, Italy Correspondence to be sent to: perse@math.hr

We discover a large class of simple affine vertex algebras $V_{k}(\mathfrak{g})$, associated to basic Lie superalgebras \mathfrak{g} at non-admissible collapsing levels k, having exactly one irreducible \mathfrak{g}-locally finite module in the category \mathcal{O}. In the case when \mathfrak{g} is a Lie algebra, we prove a complete reducibility result for $V_{k}(\mathfrak{g})$-modules at an arbitrary collapsing level. We also determine the generators of the maximal ideal in the universal affine vertex algebra $V^{k}(\mathfrak{g})$ at certain negative integer levels. Considering some conformal embeddings in the simple affine vertex algebras $V_{-1 / 2}\left(C_{n}\right)$ and $V_{-4}\left(E_{7}\right)$, we surprisingly obtain the realization of non-simple affine vertex algebras of types B and D having exactly one non-trivial ideal.

1 Introduction

Affine vertex algebras are one of the most interesting and important classes of vertex algebras. Categories of modules for simple affine vertex algebra $V_{k}(\mathfrak{g})$, associated to a simple Lie algebra \mathfrak{g}, have mostly been studied in the case of positive integer levels $k \in \mathbb{Z}_{\geq 0}$. These categories enjoy many nice properties such as: finitely many irreducibles, semisimplicity, modular invariance of characters (cf. [26], [31], [34], [41]).

In recent years, affine vertex algebras have attracted a lot of attention because of their connection with affine \mathcal{W}-algebras $W_{k}(\mathfrak{g}, f)$, obtained by quantum Hamiltonian reduction (cf. [21], [23], [35], [36]). Since the quantum Hamiltonian reduction functor $H_{f}(\cdot)$ maps any integrable $\widehat{\mathfrak{g}}$-module to zero (cf. [12], [35]), in order to obtain interesting \mathcal{W}-algebras, one has to consider affine vertex algebras $V_{k}(\mathfrak{g})$, for $k \notin \mathbb{Z}_{\geq 0}$.

It turns out that for certain non-admissible levels k (such as negative integer levels), the associated vertex algebras $V_{k}(\mathfrak{g})$ have finitely many irreducibles in category \mathcal{O} (cf. [15], [17], [40]), and their characters satisfy certain modular-like properties (cf. [14]). These affine vertex algebras then give C_{2}-cofinite \mathcal{W}-algebras $W_{k}(\mathfrak{g}, f)$, for properly chosen nilpotent element f (cf. [37], [39]).

In this paper, we classify irreducible modules in the category $K L_{k}$ (i.e. the category of \mathfrak{g}-locally finite $V_{k}(\mathfrak{g})$-modules in \mathcal{O}^{k} (see Subsection 2.3) for a large family of collapsing levels k. Recall from [4] that a level k is called collapsing if the simple \mathcal{W}-algebra $W_{k}(\mathfrak{g}, \theta)$, associated to a minimal nilpotent element $e_{-\theta}$, is isomorphic to its affine vertex subalgebra $\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right)$ (see Definition 2.2 and (7)). In the present paper we keep the notation of [4]. In particular, the highest root is normalized by the condition $(\theta, \theta)=2$. We discover a large family of vertex algebras having one irreducible module in the category $K L_{k}$, which in a way extends the results on Deligne series from [15]. Part (1) is proven there in the Lie algebra case.

Theorem 1.1. Assume that the level k and the basic simple Lie superalgebra \mathfrak{g} satisfy one of the following conditions:
(1) $k=-\frac{h^{\vee}}{6}-1$ and \mathfrak{g} is one of the Lie algebras of exceptional Deligne's series $A_{2}, G_{2}, D_{4}, F_{4}, E_{6}, E_{7}, E_{8}$, or $\mathfrak{g}=\operatorname{psl}(m \mid m)(m \geq 2), \operatorname{osp}(n+8 \mid n)(n \geq 2), \operatorname{spo}(2 \mid 1), F(4), G(3)$ (for both choices of $\theta)$;
(2) $k=-h^{\vee} / 2+1$ and $\mathfrak{g}=\operatorname{osp}(n+4 m+8 \mid n), n \geq 2, m \geq 0$.
(3) $k=-h^{\vee} / 2+1$ and $\mathfrak{g}=D_{2 m}, m \geq 2$.
(4) $k=-10$ and $\mathfrak{g}=E_{8}$.

Then $V_{k}(\mathfrak{g})$ is the unique irreducible $V_{k}(\mathfrak{g})$-module in the category $K L_{k}$.

We also prove a complete reducibility result in $K L_{k}$ (cf. Theorem 5.9, Theorem 5.7):
Theorem 1.2. Assume that \mathfrak{g} is a Lie algebra and $k \in \mathbb{C} \backslash \mathbb{Z}_{\geq 0}$. Then $K L_{k}$ is a semi-simple category in the following cases:

- k is a collapsing level.
- $W_{k}(\mathfrak{g}, \theta)$ is a rational vertex operator algebra.

It is interesting that in some cases we have that $K L_{k}$ is a semi-simple category, but there can exist indecomposable but not irreducible $V_{k}(\mathfrak{g})$-modules in the category \mathcal{O}. In order to prove Theorem 1.2 we modified methods from [28] and [20] in a vertex algebraic setting. In particular we prove that the contravariant functor $M \mapsto M^{\sigma}$ from [20] acts on the category $K L_{k}$ (cf. Lemma 3.6). Then for the proof of complete reducibility in $K L_{k}$ it is enough to check that every highest weight $V_{k}(\mathfrak{g})$-module in $K L_{k}$ is irreducible (cf. Theorem 5.5).

Representation theory of a simple affine vertex algebra $V_{k}(\mathfrak{g})$ is naturally connected with the structure of the maximal ideal in the universal affine vertex algebra $V^{k}(\mathfrak{g})$. In the second part of paper we present explicit formulas for singular vectors which generate the maximal ideal in $V^{2-2 \ell}\left(D_{2 \ell}\right)$ (which is case (3) of Theorem 1.1)
and $V^{-2}\left(D_{\ell}\right)$. In the second case, we show that the Hamiltonian reduction functor $H_{\theta}(\cdot)$ gives an equivalence of the category of \mathfrak{g}-locally finite $V_{-2}\left(D_{\ell}\right)$-modules $K L_{-2}$ and the category of modules for a rational vertex algebra $V_{\ell-4}\left(A_{1}\right)$. Singular vectors in $V^{k}(\mathfrak{g})$ for certain negative integer levels k have also been constructed in [2].

We also apply our results to study the structure of conformally embedded subalgebras of some simple affine vertex algebras.

As in [6], for a subalgebra \mathfrak{k} of a simple Lie algebra \mathfrak{g}, we denote by $\widetilde{V}(k, \mathfrak{k})$ the vertex subalgebra of $V_{k}(\mathfrak{g})$ generated by $x(-1) \mathbf{1}, x \in \mathfrak{k}$. If \mathfrak{k} is a reductive quadratic subalgebra of \mathfrak{g}, then we say that $\widetilde{V}(k, \mathfrak{k})$ is conformally embedded in $V_{k}(\mathfrak{g})$ if the Sugawara-Virasoro vectors of both algebras coincide. We also say that \mathfrak{k} is conformally embedded in \mathfrak{g} at level k if $\widetilde{V}(k, \mathfrak{k})$ is conformally embedded in $V_{k}(\mathfrak{g})$.

We are able to prove that in the cases listed in Theorem 1.3 below, $\widetilde{V}(k, \mathfrak{k})$ is not simple. On the other hand, we show that $V_{-1 / 2}\left(C_{5}\right)$ contains a simple subalgebra $V_{-2}\left(B_{2}\right) \otimes V_{-5 / 2}\left(A_{1}\right)$ (see Corollary 7.4). For the conformal embedding of $D_{6} \times A_{1}$ into E_{7} at level $k=-4$, we show that $\tilde{V}\left(-4, D_{6} \times A_{1}\right)=\mathcal{V}_{-4}\left(D_{6}\right) \otimes V_{-4}\left(A_{1}\right)$ where $\mathcal{V}_{-4}\left(D_{6}\right)$ is a quotient of the universal affine vertex algebra $V^{-4}\left(D_{6}\right)$ by two singular vectors of conformal weights two and three (cf. (39)). Moreover, $\mathcal{V}_{-4}\left(D_{6}\right)$ has infinitely many irreducible modules in the category of \mathfrak{g}-locally finite modules, which we explicitly describe. All of them appear in $V_{-4}\left(E_{7}\right)$ as submodules or subquotients.

Theorem 1.3. Let $\mathcal{V}_{k}\left(D_{\ell}\right), \mathcal{V}_{k}\left(B_{\ell}\right)$, be the vertex algebras defined in (25), (26), (39). Consider the following conformal embeddings:
(1) $D_{\ell} \times A_{1}$ into $C_{2 l}$ for $\ell \geq 4$ at level $k=-\frac{1}{2}$.
(2) $B_{\ell} \times A_{1}$ into $C_{2 l+1}$ for $\ell \geq 3$ at level $k=-\frac{1}{2}$.
(3) $D_{6} \times A_{1}$ into E_{7} at level $k=-4$.

Then,

- $\widetilde{V}\left(-\frac{1}{2}, D_{\ell} \times A_{1}\right)=\mathcal{V}_{-2}\left(D_{\ell}\right) \otimes V_{-\ell}\left(A_{1}\right)$ in case (1),
- $\widetilde{V}\left(-\frac{1}{2}, B_{\ell} \times A_{1}\right)=\mathcal{V}_{-2}\left(B_{\ell}\right) \otimes V_{-\ell-1 / 2}\left(A_{1}\right)$ in case (2),
- $\widetilde{V}\left(-4, D_{6} \times A_{1}\right)=\mathcal{V}_{-4}\left(D_{6}\right) \otimes V_{-4}\left(A_{1}\right)$ in case (3).

Moreover, the algebras $\mathcal{V}_{k}\left(D_{\ell}\right), \mathcal{V}_{k}\left(B_{\ell}\right)$, are non-simple, with a unique non-trivial ideal.
The decompositions of the embeddings above is still an open problem, and will be a subject of our forthcoming papers.

2 Preliminaries

We assume that the reader is familiar with the notion of vertex (super)algebra (cf. [18], [25], [32]) and of simple basic Lie superalgebras (see [30]) and their affinizations (see [31] for the Lie algebra case).

Let V be a conformal vertex algebra. Denote by $A(V)$ the associative algebra introduced in [41], called the Zhu algebra of V.

2.1 Basic Lie superalgebras and minimal gradings

For the reader's convenience we recall here the setting and notation of [4] regarding basic Lie superalgebras and their minimal gradings. Let $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a simple finite dimensional basic Lie superalgebra. We choose a Cartan subalgebra \mathfrak{h} for $\mathfrak{g}_{\overline{0}}$ and let Δ be the set of roots. Assume \mathfrak{g} is not $\operatorname{osp}(3 \mid n)$. A root $-\theta$ is called minimal if it is even and there exists an additive function $\varphi: \Delta \rightarrow \mathbb{R}$ such that $\varphi_{\mid \Delta} \neq 0$ and $\varphi(\theta)>\varphi(\eta), \forall \eta \in \Delta \backslash\{\theta\}$. Fix a minimal root $-\theta$ of \mathfrak{g}. We may choose root vectors e_{θ} and $e_{-\theta}$ such that

$$
\left[e_{\theta}, e_{-\theta}\right]=x \in \mathfrak{h}, \quad\left[x, e_{ \pm \theta}\right]= \pm e_{ \pm \theta}
$$

Due to the minimality of $-\theta$, the eigenspace decomposition of $a d x$ defines a minimal $\frac{1}{2} \mathbb{Z}$-grading ([36, (5.1)]):

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1 / 2} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1 / 2} \oplus \mathfrak{g}_{1} \tag{1}
\end{equation*}
$$

where $\mathfrak{g}_{ \pm 1}=\mathbb{C} e_{ \pm \theta}$. We thus have a bijective correspondence between minimal gradings (up to an automorphism of \mathfrak{g}) and minimal roots (up to the action of the Weyl group). Furthermore, one has

$$
\begin{equation*}
\mathfrak{g}_{0}=\mathfrak{g}^{\natural} \oplus \mathbb{C} x, \quad \mathfrak{g}^{\natural}=\left\{a \in \mathfrak{g}_{0} \mid(a \mid x)=0\right\} . \tag{2}
\end{equation*}
$$

Note that \mathfrak{g}^{\natural} is the centralizer of the triple $\left\{f_{\theta}, x, e_{\theta}\right\}$. We can choose $\mathfrak{h}^{\natural}=\{h \in \mathfrak{h} \mid(h \mid x)=0\}$, as a Cartan subalgebra of the Lie superalgebra \mathfrak{g}^{\natural}, so that $\mathfrak{h}=\mathfrak{h}^{\natural} \oplus \mathbb{C} x$.

For a given choice of a minimal root $-\theta$, we normalize the invariant bilinear form $(\cdot \mid \cdot)$ on \mathfrak{g} by the condition

$$
\begin{equation*}
(\theta \mid \theta)=2 \tag{3}
\end{equation*}
$$

The dual Coxeter number h^{\vee} of the pair (\mathfrak{g}, θ) (equivalently, of the minimal gradation (1)) is defined to be half the eigenvalue of the Casimir operator of \mathfrak{g} corresponding to $(\cdot \mid \cdot)$, normalized by (3). Since θ is the highest root, we have that $2 h^{\vee}=(\theta \mid \theta+2 \rho)$ hence

$$
\begin{equation*}
(\rho \mid \theta)=h^{\vee}-1 \tag{4}
\end{equation*}
$$

The complete list of the Lie superalgebras \mathfrak{g}^{\natural}, the \mathfrak{g}^{\natural}-modules $\mathfrak{g}_{ \pm 1 / 2}$ (they are isomorphic and self-dual), and h^{\vee} for all possible choices of \mathfrak{g} and of θ (up to isomorphism) is given in Tables $1,2,3$ of [36]. We reproduce them below. Note that in these tables $\mathfrak{g}=\operatorname{osp}(m \mid n)$ (resp. $\mathfrak{g}=\operatorname{spo}(n \mid m))$ means that θ is the highest root of the simple component $s o(m)$ (resp. $s p(n))$ of $\mathfrak{g}_{\overline{0}}$. Also, for $\mathfrak{g}=s l(m \mid n)$ or $p s l(m \mid m)$ we always take θ to be the highest root of the simple component $s l(m)$ of $\mathfrak{g}_{\overline{0}}$ (for $m=4$ we take one of the simple roots). Note that the
exceptional Lie superalgebras $\mathfrak{g}=F(4)$ and $\mathfrak{g}=G(3)$ appear in both Tables 2 and 3, which corresponds to the two inequivalent choices of θ, the first one being a root of the simple component $\operatorname{sl}(2)$ of $\mathfrak{g}_{\overline{0}}$.

Table 1
\mathfrak{g} is a simple Lie algebra.

\mathfrak{g}	\mathfrak{g}^{\natural}	$\mathfrak{g}_{1 / 2}$	h^{\vee}	\mathfrak{g}	\mathfrak{g}^{\natural}	$\mathfrak{g}_{1 / 2}$	h^{\vee}
$s l(n), n \geq 3$	$g l(n-2)$	$\mathbb{C}^{n-2} \oplus\left(\mathbb{C}^{n-2}\right)^{*}$	n	F_{4}	$s p(6)$	$\bigwedge_{0}^{3} \mathbb{C}^{6}$	9
$s o(n), n \geq 5$	$s l(2) \oplus \operatorname{so}(n-4)$	$\mathbb{C}^{2} \otimes \mathbb{C}^{n-4}$	$n-2$	E_{6}	$s l(6)$	$\bigwedge^{3} \mathbb{C}^{6}$	12
$s p(n), n \geq 2$	$s p(n-2)$	\mathbb{C}^{n-2}	$n / 2+1$	E_{7}	$\operatorname{so}(12)$	spin_{12}	18
G_{2}	$\operatorname{sl}(2)$	$S^{3} \mathbb{C}^{2}$	4	E_{8}	E_{7}	$\operatorname{dim}=56$	30

Table 2
\mathfrak{g} is not a Lie algebra but \mathfrak{g}^{\natural} is and $\mathfrak{g}_{ \pm 1 / 2}$ is purely odd $(m \geq 1)$.

\mathfrak{g}	\mathfrak{g}^{\natural}	$\mathfrak{g}_{1 / 2}$	h^{\vee}	\mathfrak{g}	\mathfrak{g}^{\natural}	$\mathfrak{g}_{1 / 2}$	h^{\vee}	
$\operatorname{sl}(2 \mid m)$,	$g l(m)$	$\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$	$2-m$	$D(2,1 ; a)$	$\operatorname{sl}(2) \oplus \operatorname{sl(2)}$	$\mathbb{C}^{2} \otimes \mathbb{C}^{2}$	0	
$m \neq 2$								
$p s l(2 \mid 2)$	$\operatorname{sl}(2)$	$\mathbb{C}^{2} \oplus \mathbb{C}^{2}$	0	$F(4)$	$\operatorname{so}(7)$	spin_{7}	-2	
$\operatorname{spo}(2 \mid m)$	$\operatorname{so}(m)$	\mathbb{C}^{m}	$2-m / 2$	$G(3)$	G_{2}	$\operatorname{Dim}=0 \mid 7$	$-3 / 2$	
$\operatorname{osp(4\|m)}$	$\operatorname{sl}(2) \oplus \operatorname{sp(m)}$	$\mathbb{C}^{2} \otimes \mathbb{C}^{m}$	$2-m$					

Table 3

Both \mathfrak{g} and \mathfrak{g}^{\natural} are not Lie algebras $(m, n \geq 1)$.

\mathfrak{g}	\mathfrak{g}^{\natural}	$\mathfrak{g}_{1 / 2}$	h^{\vee}
$s l(m \mid n), m \neq n, m>2$	$g l(m-2 \mid n)$	$\mathbb{C}^{m-2 \mid n} \oplus\left(\mathbb{C}^{m-2 \mid n}\right)^{*}$	$m-n$
$p s l(m \mid m), m>2$	$\operatorname{sl}(m-2 \mid m)$	$\mathbb{C}^{m-2 \mid m} \oplus\left(\mathbb{C}^{m-2 \mid m}\right)^{*}$	0
$\operatorname{spo}(n \mid m), n \geq 4$	$\operatorname{spo}(n-2 \mid m)$	$\mathbb{C}^{n-2 \mid m}$	$1 / 2(n-m)+1$
$\operatorname{osp}(m \mid n), m \geq 5$	$o s p(m-4 \mid n) \oplus \operatorname{sl}(2)$	$\mathbb{C}^{m-4 \mid n} \otimes \mathbb{C}^{2}$	$m-n-2$
$F(4)$	$D(2,1 ; 2)$	$\operatorname{Dim}=6 \mid 4$	3
$G(3)$	$\operatorname{osp}(3 \mid 2)$	$\operatorname{Dim}=4 \mid 4$	2

In this paper we shall exclude the case of $\mathfrak{g}=\operatorname{sl}(n+2 \mid n), n>0$. In all other cases the Lie superalgebra \mathfrak{g}^{\natural} decomposes in a direct sum of all its minimal ideals, called components of $\mathfrak{g}^{\text {a }}$:

$$
\mathfrak{g}^{\natural}=\bigoplus_{i \in I} \mathfrak{g}_{i}^{\natural},
$$

where each summand is either the (at most 1-dimensional) center of \mathfrak{g}^{\natural} or is a basic simple Lie superalgebra different from $\operatorname{psl}(n \mid n)$. Let $C_{\mathfrak{g}_{i}^{\natural}}$ be the Casimir operator of $\mathfrak{g}_{i}^{\natural}$ corresponding to $(\cdot \mid \cdot)_{\mid \mathfrak{g}_{i}^{\natural} \times \mathfrak{g}_{i}^{\natural}}$. We define the dual Coxeter number $h_{0, i}^{\vee}$ of $\mathfrak{g}_{i}^{\natural}$ as half of the eigenvalue of $C_{\mathfrak{g}_{i}^{\natural}}$ acting on $\mathfrak{g}_{i}^{\natural}$ (which is 0 if $\mathfrak{g}_{i}^{\natural}$ is abelian).

Denote by $V_{\mathfrak{g}}(\mu)$ (or $V(\mu)$) the irreducible finite-dimensional highest weight \mathfrak{g}-module with highest weight μ. Denote by P_{+}the set of highest weights of irreducible finite-dimensional representations of \mathfrak{g}.

Since $\mathfrak{h}=\mathfrak{h}^{\mathfrak{h}} \oplus \mathbb{C} x$, we have, in particular, that $\mu \in \mathfrak{h}^{*}$ can be uniquely written as

$$
\begin{equation*}
\mu=\mu_{\mid \mathfrak{h}^{\mathfrak{q}}}+\ell \theta, \tag{5}
\end{equation*}
$$

with $\ell \in \mathbb{C}$. If $\mu \in P_{+}$, then, since $\theta\left(\mathfrak{h}^{\natural}\right)=0, \mu\left(\theta^{\vee}\right)=2 \ell \in \mathbb{Z}$, so $\ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}$.

2.2 Affine Lie algebras, vertex algebras, \mathcal{W}-algebras

Let $\widehat{\mathfrak{g}}$ be the affinization of \mathfrak{g} :

$$
\widehat{\mathfrak{g}}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{g} \oplus \mathbb{C} K \oplus \mathbb{C} d
$$

with the usual commutation relations. We let δ be the fundamental imaginary root. Let $\alpha_{0}=\delta-\theta$ the affine simple root. Since θ is even, hence non-isotropic, so that $\alpha_{0}^{\vee}=K-\theta^{\vee}$ makes sense.

Denote by $L(\lambda)\left(\right.$ or $\left.L_{\mathfrak{g}}(\lambda)\right)$ the irreducible highest weight $\widehat{\mathfrak{g}}$-module with highest weight λ.
Denote by $V^{k}(\mathfrak{g})$ the universal affine vertex algebra associated to $\widehat{\mathfrak{g}}$ of level $k \in \mathbb{C}$. We shall assume that $k \neq-h^{\vee}$. Then (see e.g. [32]) $V^{k}(\mathfrak{g})$ is a conformal vertex algebra with Segal-Sugawara conformal vector $\omega_{\mathfrak{g}}$. Let $Y\left(\omega_{\mathfrak{g}}, z\right)=\sum L_{\mathfrak{g}}(n) z^{-n-2}$ be the corresponding Virasoro field. Denote by $V_{k}(\mathfrak{g})$ the (unique) simple quotient of $V^{k}(\mathfrak{g})$. Clearly, $V_{k}(\mathfrak{g}) \cong L_{\mathfrak{g}}\left(k \Lambda_{0}\right)$ as $\widehat{\mathfrak{g}}$-modules.

Denote by $W^{k}(\mathfrak{g}, \theta)$ the affine \mathcal{W}-algebra obtained from $V^{k}(\mathfrak{g})$ by Hamiltonian reduction relative to a minimal nilpotent element $e_{-\theta}$. Denote by $W_{k}(\mathfrak{g}, \theta)$ the simple quotient of $W^{k}(\mathfrak{g}, \theta)$. Recall that the vertex algebra $W^{k}(\mathfrak{g}, \theta)$ is strongly and freely generated by elements $J^{\{a\}}$, where a runs over a basis of $\mathfrak{g}^{\natural}, G^{\{v\}}$, where v runs over a basis of $\mathfrak{g}_{-1 / 2}$, and the Virasoro vector ω. The elements $J^{\{a\}}, G^{\{v\}}$ are primary of conformal weight 1 and $3 / 2$, respectively, with respect to ω.

Let $\mathcal{V}^{k}\left(\mathfrak{g}^{\natural}\right)$ be the subalgebra of the vertex algebra $W^{k}(\mathfrak{g}, \theta)$, generated by $\left\{J^{\{a\}} \mid a \in \mathfrak{g}^{\text {h }}\right\}$. The vertex algebra $\mathcal{V}^{k}\left(\mathfrak{g}^{\natural}\right)$ is isomorphic to a universal affine vertex algebra. More precisely, letting

$$
\begin{equation*}
k_{i}=k+\frac{1}{2}\left(h^{\vee}-h_{0, i}^{\vee}\right), i \in I \tag{6}
\end{equation*}
$$

the map $a \mapsto J^{\{a\}}$ extends to an isomorphism $\mathcal{V}^{k}\left(\mathfrak{g}^{\natural}\right) \simeq \bigotimes_{i \in I} V^{k_{i}}\left(\mathfrak{g}_{i}^{\natural}\right)$.
We also set $\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right)$ to be the image of $\mathcal{V}^{k}\left(\mathfrak{g}^{\natural}\right)$ in $W_{k}(\mathfrak{g}, \theta)$. Clearly we can write

$$
\begin{equation*}
\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right) \simeq \bigotimes_{i \in I} \mathcal{V}_{k_{i}}\left(\mathfrak{g}_{i}^{\natural}\right) \tag{7}
\end{equation*}
$$

where $\mathcal{V}_{k_{i}}\left(\mathfrak{g}_{i}^{\natural}\right)$ is some quotient (not necessarily simple) of $V^{k_{i}}\left(\mathfrak{g}_{i}^{\natural}\right)$.

2.3 Category \mathcal{O} and Hamiltonian reduction functor

Recall that $\widehat{\mathfrak{g}}$-module M is in category \mathcal{O}^{k} if it is $\widehat{\mathfrak{h}}$-diagonalizable with finite dimensional weight spaces, K acts as $k I d_{M}$ and M has a finite number of maximal weights.

There is a remarkable functor H_{θ} from \mathcal{O}^{k} to the category of $W^{k}(\mathfrak{g}, \theta)$-modules whose properties will be very important in the following. We recall them in a form suitable for our purposes (see [12] for details; there H_{θ} is denoted by H^{0}).

Theorem 2.1.

1. H_{θ} is exact.
2. If $L(\lambda)$ is a irreducible highest weight $\widehat{\mathfrak{g}}$-module, then $\lambda\left(\alpha_{0}^{\vee}\right) \in \mathbb{Z}_{\geq 0}$ implies $H_{\theta}(L(\lambda))=\{0\}$. Otherwise $H_{\theta}(L(\lambda))$ is isomorphic to the irreducible $W^{k}(\mathfrak{g}, \theta)$-module with highest weight ϕ_{λ} defined by formula (67) in [12].

2.4 Collapsing levels

Definition 2.2. Assume $k \neq-h^{\vee}$. If $W_{k}(\mathfrak{g}, \theta)=\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right)$, we say that k is a collapsing level.

Theorem 2.3. [4, Theorem 3.3] Let $p(k)$ be the polynomial listed in Table 4 below. Then k is a collapsing level if and only if $k \neq-h^{\vee}$ and $p(k)=0$. In such cases,

$$
\begin{equation*}
W_{k}(\mathfrak{g}, \theta)=\bigotimes_{i \in I^{*}} V_{k_{i}}\left(\mathfrak{g}_{i}^{\natural}\right) \tag{8}
\end{equation*}
$$

where $I^{*}=\left\{i \in I \mid k_{i} \neq 0\right\}$. If $I^{*}=\emptyset$, then $W_{k}(\mathfrak{g}, \theta)=\mathbb{C}$.

Table 4

\mathfrak{g}	$p(k)$	\mathfrak{g}	$p(k)$
$s l(m \mid n), n \neq m$	$(k+1)(k+(m-n) / 2)$	E_{6}	$(k+3)(k+4)$
$p s l(m \mid m)$	$k(k+1)$	E_{7}	$(k+4)(k+6)$
$o s p(m \mid n)$	$(k+2)(k+(m-n-4) / 2)$	E_{8}	$(k+6)(k+10)$
$s p o(n \mid m)$	$(k+1 / 2)(k+(n-m+4) / 4)$	F_{4}	$(k+5 / 2)(k+3)$
$D(2,1 ; a)$	$(k-a)(k+1+a)$	G_{2}	$(k+4 / 3)(k+5 / 3)$
$F(4), \mathfrak{g}^{\natural}=s o(7)$	$(k+2 / 3)(k-2 / 3)$	$G(3), \mathfrak{g}^{\natural}=G_{2}$	$(k-1 / 2)(k+3 / 4)$
$F(4), \mathfrak{g}^{\natural}=D(2,1 ; 2)$	$(k+3 / 2)(k+1)$	$G(3), \mathfrak{g}^{\natural}=o s p(3 \mid 2)$	$(k+2 / 3)(k+4 / 3)$

2.5 Weyl vertex algebra

Let M_{ℓ} denote the Weyl vertex algebra (also called symplectic bosons) generated by even elements $a_{i}^{ \pm}, i=1, \ldots, \ell$ satisfying the following λ-brackets

$$
\left[\left(a_{i}^{ \pm}\right)_{\lambda}\left(a_{j}^{ \pm}\right)\right]=0, \quad\left[\left(a_{i}^{+}\right)_{\lambda}\left(a_{j}^{-}\right)\right]=\delta_{i, j} .
$$

Recall also that the symplectic affine vertex algebra $V_{-1 / 2}\left(C_{\ell}\right)$ is realized as a \mathbb{Z}_{2}-orbifold of M_{ℓ} (see [22]).

3 The category $K L_{k}$

Let k be a noncritical level. Note that the Casimir element of $\widehat{\mathfrak{g}}$ can be expressed as $\Omega=d+L_{\mathfrak{g}}(0)$; it commutes with $\widehat{\mathfrak{g}}$-action.

Consider the category \mathcal{C}^{k} of modules for the universal affine vertex algebra $V^{k}(\mathfrak{g})$, i.e. the category of restricted $\widehat{\mathfrak{g}}$-modules of level k. Regard $M \in \mathcal{C}^{k}$ as a $\widehat{\mathfrak{g}}$-module by letting d act as $-L_{\mathfrak{g}}(0)$. Let $K L^{k}$ be the
category of modules $M \in \mathcal{C}^{k}$ such that, as $\widehat{\mathfrak{g}}$-modules, are in \mathcal{O}^{k} and which admit the following weight space decomposition with respect to $L_{\mathfrak{g}}(0)$:

$$
M=\bigoplus_{\alpha \in \mathbb{C}} M(\alpha), \quad L_{\mathfrak{g}}(0) \mid M(\alpha) \equiv \alpha \mathrm{Id}, \operatorname{dim} M(\alpha)<\infty
$$

Our definition is related but different from the one introduced in [13]. Let $K L_{k}$ be the category of all modules in $K L^{k}$ which are $V_{k}(\mathfrak{g})$-modules.

Remark 3.1. If $V_{k}(\mathfrak{g})$ has finitely many irreducible modules in the category $K L^{k}$, one can show that every $V_{k}(\mathfrak{g})$-module M in $K L_{k}$ is of finite length. This happens when k is admissible (cf. [12]) and when $V_{k}(\mathfrak{g})$ is quasi-lisse (cf. [14]). But when $V_{k}(\mathfrak{g})$ has infinitely many irreducible modules in $K L^{k}$ (as in the cases considered in [33], [11]), then one can have modules in $K L_{k}$ of infinite length.

Recall that there is a one-to-one correspondence between irreducible $\mathbb{Z}_{\geq 0}{ }^{-}$graded modules for a conformal vertex algebra V (with a conformal vector ω, such that $Y(\omega, z)=\sum_{i \in \mathbb{Z}} L(i) z^{-i-2}$) and irreducible modules for the corresponding Zhu algebra $A(V)[41]$. This implies, in particular, that there is a one-to-one correspondence between irreducible finite-dimensional $A(V)$-modules and irreducible $\mathbb{Z}_{\geq 0^{-} \text {-graded }} V$-modules whose graded components, which are eigenspaces for $L(0)$, are finite-dimensional. In the case of affine vertex algebras, we have the following simple interpretation.

Proposition 3.2. Let $\widetilde{V}_{k}(\mathfrak{g})$ be a quotient of $V^{k}(\mathfrak{g})$ (not necessary simple). Consider $\widetilde{V}_{k}(\mathfrak{g})$ as a conformal vertex algebra with conformal vector $\omega_{\mathfrak{g}}$. Then there is a one-to-one correspondence between irreducible $\tilde{V}_{k}(\mathfrak{g})$ in the category $K L^{k}$ and irreducible finite-dimensional $A\left(\widetilde{V}_{k}(\mathfrak{g})\right)$-modules.

Corollary 3.3. Assume that \mathfrak{g} is a simple basic Lie superalgebra and $\widetilde{V}_{k}(\mathfrak{g})$ is a quotient of $V^{k}(\mathfrak{g})$ such that the trivial module \mathbb{C} is the unique finite-dimensional irreducible $A\left(\widetilde{V}_{k}(\mathfrak{g})\right)$-module. Then $\widetilde{V}_{k}(\mathfrak{g})=V_{k}(\mathfrak{g})$.

Proof. Assume that $\widetilde{V}_{k}(\mathfrak{g})$ is not simple. Then it contains a non-zero graded ideal $I \neq \widetilde{V}_{k}(\mathfrak{g})$ with respect to $L_{\mathfrak{g}}(0):$

$$
I=\bigoplus_{n \in \mathbb{Z} \geq 0} I\left(n+n_{0}\right), \quad L_{\mathfrak{g}}(0) \mid I(r)=r \mathrm{Id}, \quad I\left(n_{0}\right) \neq 0
$$

Since $I \neq \widetilde{V}_{k}(\mathfrak{g})$, we have that $n_{0}>0$, otherwise $\mathbf{1} \in I$.
We can consider $I\left(n_{0}\right)$ as a finite-dimensional module for \mathfrak{g} and for the Zhu algebra $A\left(\tilde{V}_{k}(\mathfrak{g})\right)$.
Since the Casimir element $C_{\mathfrak{g}}$ of \mathfrak{g} acts on $I\left(n_{0}\right)$ as the non-zero constant $2\left(k+h^{\vee}\right) n_{0}$, we conclude that $C_{\mathfrak{g}}$ acts by the same constant on any irreducible \mathfrak{g}-subquotient of $I\left(n_{0}\right)$. But any irreducible subquotient of $I\left(n_{0}\right)$ is an irreducible finite-dimensional $A\left(\tilde{V}_{k}(\mathfrak{g})\right)$-module, and therefore it is trivial. This implies that $C_{\mathfrak{g}}$ acts non-trivially on a trivial \mathfrak{g}-module. A contradiction.

Take the Chevalley generators $e_{i}, f_{i}, h_{i}, i=0, \ldots, \ell$, of the Kac-Moody Lie algebra $\widehat{\mathfrak{g}}$ such that e_{i}, f_{i}, h_{i}, $i=1, \ldots, \ell$, are the Chevalley generators of \mathfrak{g}. Let σ be the Chevalley antiautomorphism of $\widehat{\mathfrak{g}}$ defined by

$$
e_{i} \mapsto f_{i}, \quad f_{i} \mapsto e_{i}, h_{i} \mapsto h_{i}, \quad d \mapsto d \quad(i=0, \ldots, \ell)
$$

Assume that M is from the category \mathcal{O} of non-critical level k. Then M admits the decomposition into weight spaces $M=\bigoplus_{\mu \in \Omega(M)} M_{\mu}$, where $\Omega(M)$ is the set of weights of M and $\operatorname{dim} M_{\mu}<\infty$ for every $\mu \in \Omega(M)$. For a finite-dimensional vector spaces U, let U^{*} denote its dual space. Then we have the contravariant functor $M \mapsto M^{\sigma}[20]$ acting on modules from the category \mathcal{O}. Here $M^{\sigma}=\bigoplus_{\mu \in \Omega(M)} M_{\mu}^{*}$ is the $\widehat{\mathfrak{g}}$-module uniquely determined by

$$
\left\langle y w^{\prime}, w\right\rangle=\left\langle w^{\prime}, \sigma(y) w\right\rangle, \quad y \in \widehat{\mathfrak{g}}, w^{\prime} \in M^{\sigma}, w \in M
$$

It is easy to see that M admits the decomposition

$$
\begin{equation*}
M=\bigoplus_{\alpha \in \mathbb{C}} M(\alpha), \quad L_{\mathfrak{g}}(0) \mid M(\alpha) \equiv \alpha \operatorname{Id} \tag{9}
\end{equation*}
$$

such that:

- for any $\alpha \in \mathbb{C}$ we have $M(\alpha-n)=0$ for $n \in \mathbb{Z}$ sufficiently large;
- for any $\mu \in \Omega(M)$ there exist $\alpha \in \mathbb{C}$ such that $M_{\mu} \subset M(\alpha)$.

Proposition 3.4. Assume that a module M is in the category \mathcal{O}^{k}. Then M is in the category $K L^{k}$ if and only if M is \mathfrak{g}-locally finite.

Proof. If M is in $K L^{k}$ then it admits a decomposition as in (9). Since the spaces $M(\alpha)$ are \mathfrak{g}-stable and finite-dimensional, M is \mathfrak{g}-locally finite.

Let us prove the converse. If M is a highest weight module which is \mathfrak{g}-locally finite, then clearly all eigenspaces for $L_{\mathfrak{g}}(0)$ are finite-dimensional. Assume now that M is an arbitrary \mathfrak{g}-locally finite module in the category \mathcal{O}^{k}. Take $\alpha \in \mathbb{C}$ such that $M(\alpha) \neq\{0\}$. Then from [20, Proposition 3.1] we see that M has an increasing filtration (possibly infinite)

$$
\begin{equation*}
\{0\}=M_{0} \subset M_{1} \subset \cdots \subset M \tag{10}
\end{equation*}
$$

such that for every $j \in \mathbb{Z}_{>0}, M_{j} / M_{j-1} \cong \widetilde{L}\left(\lambda_{j}\right)$ is a highest weight $V^{k}(\mathfrak{g})$-module with highest weight λ_{j}, which is \mathfrak{g}-locally finite. Let $h_{\lambda_{j}}$ denotes the lowest conformal weight of $\widetilde{L}\left(\lambda_{j}\right)$. Since the factors M_{i} / M_{i-1} $(i \leq j)$ of M_{j} are highest weight modules, their $L_{\mathfrak{g}}(0)$-eigenspaces are finite-dimensional. This implies that the $L_{\mathfrak{g}}(0)$-eigenspaces of M_{j} is finite-dimensional. By using the properties of the category \mathcal{O} one sees the following:

- There exists a finite subset $\left\{d_{1}, \cdots, d_{s}\right\} \subset \mathbb{C}$ such that $\alpha \in \bigcup_{i=1}^{s}\left(d_{i}+\mathbb{Z}_{\geq 0}\right)$.
- For $d \in \mathbb{C}$ there exist only finitely many subquotients $\widetilde{L}\left(\lambda_{j}\right)$ in (10) such that $h_{\lambda_{j}}=d$.

This implies that there is $j_{0} \in \mathbb{Z}_{>0}$ such that $\alpha<h_{\lambda_{j}}$ for $j \geq j_{0}$. Therefore $M(\alpha) \subset M_{j_{0}}$. This proves that $M(\alpha)$ is finite-dimensional.

Remark 3.5. We will use several times the following fact, which is a consequence of the previous proposition: for any $k \notin \mathbb{Z}_{\geq 0}$ and any irreducible highest weight module $L(\lambda)$ in the category $K L^{k}$, one has $\lambda\left(\alpha_{0}^{\vee}\right) \notin \mathbb{Z}_{\geq 0}$.

Since $\sigma\left(L_{\mathfrak{g}}(0)\right)=L_{\mathfrak{g}}(0)$, if M is in the category $K L^{k}$, then M^{σ} is also in the category $K L^{k}$. The next result shows that this functor acts on the category $K L_{k}$. In the proof we find an explicit relation of M^{σ} with the contragradient modules, defined for ordinary modules for vertex operator algebras [24].

Lemma 3.6.

(1) Assume that M is a $V_{k}(\mathfrak{g})$-module in the category \mathcal{O}. Then M^{σ} is also a $V_{k}(\mathfrak{g})$-module in the category \mathcal{O}.
(2) Assume that M is a $V_{k}(\mathfrak{g})$-module in the category $K L_{k}$. Then M^{σ} is also in $K L_{k}$.

Proof. Assume that M is a $V_{k}(\mathfrak{g})$-module in the category \mathcal{O}. Take the weight decomposition $M=$ $\bigoplus_{\mu \in \Omega(M)} M_{\mu}$, and set $M^{c}=\bigoplus_{\mu \in \Omega(M)} M_{\mu}^{*}$. By applying the same approach as in the construction of the contragredient module from $\left[24\right.$, Section 5], we get a $V_{k}(\mathfrak{g})$-module $\left(M^{c}, Y_{M^{c}}(\cdot, z)\right)$, with vertex operator map

$$
\begin{equation*}
\left\langle Y_{M^{c}}(v, z) w^{\prime}, w\right\rangle=\left\langle w^{\prime}, Y_{M}\left(e^{z L_{\mathfrak{g}}(1)}\left(-z^{-2}\right)^{L_{\mathfrak{g}}(0)} v, z\right) w\right\rangle \tag{11}
\end{equation*}
$$

where $w^{\prime} \in M^{c}, w \in M$. The $\widehat{\mathfrak{g}}$-action on M^{c} is uniquely determined by

$$
\left\langle x(n) w^{\prime}, w\right\rangle=-\left\langle w^{\prime}, x(-n) w\right\rangle \quad(x \in \mathfrak{g})
$$

As a vector space $M^{c}=M^{\sigma}$, but we have different actions of $\widehat{\mathfrak{g}}$. (Note that, in general, M^{c} can be outside of the category \mathcal{O}.)

Take the Lie algebra automorphism $h \in \operatorname{Aut}(\mathfrak{g})$ such that

$$
e_{i} \mapsto-f_{i}, \quad f_{i} \mapsto-e_{i}, h_{i} \mapsto-h_{i} \quad(i=1, \ldots, \ell)
$$

Then h can be lifted to an automorphism of $V^{k}(\mathfrak{g})$. Since the maximal ideal of $V^{k}(\mathfrak{g})$ is unique, then it is h-invariant, thus h is also an automorphism of $V_{k}(\mathfrak{g})$. Then we can define a $V_{k}(\mathfrak{g})$-module $\left(M_{h}^{c}, Y_{M_{h}^{c}}(\cdot, z)\right)$ where

$$
M_{h}^{c}:=M^{c}, \quad Y_{M_{h}^{c}}(v, z)=Y_{M^{c}}(h v, z)
$$

On M_{h}^{c} we have

$$
\begin{aligned}
& \left\langle e_{i}(n) w^{\prime}, w\right\rangle=\left\langle w^{\prime}, f_{i}(-n) w\right\rangle \\
& \left\langle f_{i}(n) w^{\prime}, w\right\rangle=\left\langle w^{\prime}, e_{i}(-n) w\right\rangle \\
& \left\langle h_{i}(n) w^{\prime}, w\right\rangle=\left\langle w^{\prime}, h_{i}(-n) w\right\rangle
\end{aligned}
$$

where $i=1, \ldots, \ell$. This implies that $M_{h}^{c}=M^{\sigma}$. This proves the assertion (1).
Assume now that M is in the category $K L_{k}$. Then all $L_{\mathfrak{g}}(0)$-eigenspaces are finite-dimensional, thus

$$
M^{c}=\bigoplus_{\mu \in \Omega(M)} M_{\mu}^{*}=\bigoplus_{\alpha \in \mathbb{C}} M(\alpha)^{*}
$$

This implies the $V_{k}(\mathfrak{g})$-module $\left(M^{c}, Y_{M^{c}}(\cdot, z)\right)$ coincides with the contragredient module [24], realized on the restricted dual space $\bigoplus_{\alpha \in \mathbb{C}} M(\alpha)^{*}$, with the vertex operator map (11). Since the $L_{\mathfrak{g}}(0)$-eigenspaces of M^{c} are finite-dimensional, we conclude that M^{c} and $M^{\sigma}=M_{h}^{c}$ are $V_{k}(\mathfrak{g})$-modules in $K L_{k}$. Claim (2) follows.

4 Constructions of vertex algebras with one irreducible module in $K L_{k}$ via collapsing levels

By [4], if k is a collapsing level, then either $W_{k}(\mathfrak{g}, \theta)=\mathbb{C}, W_{k}(\mathfrak{g}, \theta)=M(1)$, or $W_{k}(\mathfrak{g}, \theta)=V_{k^{\prime}}(\mathfrak{a})$ for a unique simple component \mathfrak{a} of \mathfrak{g}^{\natural}. Here the level k^{\prime} is computed with respect to the invariant bilinear form of \mathfrak{a} normalized so that the minimal root has squared length 2 . For $\mathfrak{a}=s l(m \mid n), m \geq 2$, the minimal root is always chosen to be the lowest root of $\operatorname{sl}(m)$. For $\mathfrak{a}=\operatorname{osp}(m \mid n)$ we write $\operatorname{spo}(n \mid m)$ vs. $\operatorname{osp}(m \mid n)$ to specify the choice of the minimal root. In all other cases the minimal root of \mathfrak{a} is unique.

To simplify notation define $V_{k^{\prime}}\left(\mathfrak{g}^{\natural}\right)$ to be as follows:

$$
V_{k^{\prime}}\left(\mathfrak{g}^{\natural}\right)= \begin{cases}\mathbb{C} & \text { if } W_{k}(\mathfrak{g}, \theta)=\mathbb{C} ; \text { in this case we set } k^{\prime}=0 \\ M(1) & \text { if } W_{k}(\mathfrak{g}, \theta)=M(1) ; \text { in this case we set } k^{\prime}=1 \\ V_{k^{\prime}}(\mathfrak{a}) & \text { otherwise. }\end{cases}
$$

In Table 5 we summarize all the relevant data.
Assume that $k \notin \mathbb{Z}_{\geq 0}$ and that:
(1) k is a collapsing level for \mathfrak{g};
(2) $V_{k^{\prime}}\left(\mathfrak{g}^{\natural}\right)$ is the unique irreducible $V_{k^{\prime}}\left(\mathfrak{g}^{\natural}\right)$-module in the category $K L_{k^{\prime}}$.

Assume that $L(\widehat{\Lambda})$ is an irreducible $V_{k}(\mathfrak{g})$-module in the category $K L_{k}$. Set $\mu=\widehat{\Lambda}_{\mid \mathfrak{h}}$. By Proposition 3.4 we have $\mu \in P_{+}$, hence, by (5), the weight μ has the form $\mu=\mu^{\natural}+\ell \theta$ with $\ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}$, where $\mu^{\natural}=\mu_{\mid \mathfrak{h}^{\natural}}$.

Table 5

\mathfrak{g}	$V_{k^{\prime}}\left(\mathfrak{g}^{\natural}\right)$	k	k^{\prime}
$s l(m \mid n), m \neq n, m>3, m-2 \neq n$	$V_{k^{\prime}}(s l(m-2 \mid n))$)	$\frac{n-m}{2}$	$\frac{n-m+2}{2}$
$s l(3 \mid n), n \neq 3, n \neq 1, n \neq 0$	$\left.V_{k^{\prime}}(s l(1 \mid n))\right)$	$\frac{n-3}{2}$	$\frac{1-n}{2}$
$s l(3)$	\mathbb{C}	$-\frac{3}{2}$	0
$s l(2 \mid n), n \neq 2, n \neq 1, n \neq 0$	$V_{k^{\prime}}(s l(n))$)	$\frac{n-2}{2}$	$-\frac{n}{2}$
$s l(2 \mid 1)=\operatorname{spo}(2 \mid 2)$	\mathbb{C}	$-\frac{1}{2}$	0
$s l(m \mid n), m \neq n, n+1, n+2, m \geq 2$	$M(1)$	-1	1
$p s l(m \mid m), m \geq 2$	\mathbb{C}	-1	0
$s p o(n \mid m), m \neq n, n+2, n \geq 4$	$V_{k^{\prime}}(\operatorname{spo}(n-2 \mid m))$	$\frac{m-n-4}{4}$	$\frac{m-n-2}{4}$
$\operatorname{spo}(2 \mid m), m \geq 5$	$V_{k^{\prime}}(s o(m))$	$\frac{m-6}{4}$	$\frac{4-m}{2}$
$\operatorname{spo}(2 \mid 3)$	$V_{k^{\prime}}(s l(2))$	$-\frac{3}{4}$	1
$\operatorname{spo}(2 \mid 1)$	\mathbb{C}	$-\frac{5}{4}$	0
$\operatorname{spo}(n \mid m), m \neq n+1, n \geq 2$	\mathbb{C}	$-1 / 2$	0
$\operatorname{osp}(m \mid n), m \neq n, m \neq n+8, m \geq 7$	$V_{k^{\prime}}(\operatorname{osp}(m-4 \mid n))$	$\frac{n-m+4}{2}$	$\frac{8-m+n}{2}$
$\operatorname{osp}(m \mid n), n \neq m, 0 ; 4 \leq m \leq 6$	$V_{k^{\prime}}(\operatorname{osp}(m-4 \mid n))$	$\frac{n-m+4}{2}$	$\frac{m-n-8}{4}$
$\operatorname{osp}(m \mid n), m \neq n+4, n+8 ; m \geq 4$	$V_{k^{\prime}}(s l(2))$	-2	$\frac{m-n-8}{2}$
$\operatorname{osp}(n+8 \mid n), n \geq 0$	\mathbb{C}	-2	0
$D(2,1 ; a)$	$V_{k^{\prime}}(s l(2))$	a	$-\frac{1+2 a}{1+a}$
$D(2,1 ; a)$	$V_{k^{\prime}}(s l(2))$	$-a-1$	$-\frac{1+2 a}{a}$
$F(4)$	$V_{k^{\prime}}(D(2,1 ; 2))$	-1	$\frac{1}{2}$
$F(4)$	\mathbb{C}	$-3 / 2$	0
$F(4)$	$V_{k^{\prime}}(s o(7))$	$\frac{2}{3}$	-2
$F(4)$	\mathbb{C}	$-\frac{2}{3}$	0
E_{6}	$V_{k^{\prime}}(s l(6))$	-4	-1
E_{6}	C	-3	0
E_{7}	$V_{k^{\prime}}(s o(12))$	-6	-2
E_{7}	\mathbb{C}	-4	0
E_{8}	$V_{k^{\prime}}\left(E_{7}\right)$	-10	-4
E_{8}	\mathbb{C}	-6	0
F_{4}	$V_{k^{\prime}}(s p(6))$	-3	$-\frac{1}{2}$
F_{4}	\mathbb{C}	$-5 / 2$	0
G_{2}	$V_{k^{\prime}}(s l(2))$	$-\frac{4}{3}$	1
G_{2}	\mathbb{C}	$-\frac{5}{3}$	0
$G(3)$	$V_{k^{\prime}}\left(G_{2}\right)$	$\frac{1}{2}$	$-\frac{5}{3}$
$G(3)$	\mathbb{C}	$-\frac{3}{4}$	0
$G(3)$	$V_{k^{\prime}}(\operatorname{osp}(3 \mid 2))$	$-\frac{2}{3}$	1
$G(3)$	\mathbb{C}	$-\frac{4}{3}$	0

Since $k \notin \mathbb{Z}_{\geq 0}$, by Theorem 2.1, $H_{\theta}(L(\widehat{\Lambda}))$ is a non-trivial irreducible module for $W_{k}(\mathfrak{g}, \theta)$. Since $L(\widehat{\Lambda})$ is a quotient of the Verma module $M(\widehat{\Lambda})$, then, by exactness of $H_{\theta}, H_{\theta}(L(\widehat{\Lambda}))$ is the quotient of a Verma module for $W_{k}(\mathfrak{g}, \theta)=V_{k^{\prime}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)$ hence it is an irreducible highest weight module. By [36, (6.14)] its highest weight as $\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right)$-module is $\widehat{\Lambda}^{\natural}$ with $\widehat{\Lambda}^{\natural}(K)=k^{\prime}$ and $\widehat{\Lambda}_{\mid \mathfrak{h}^{\natural}}^{\natural}=\mu^{\natural}$. Therefore

$$
H_{\theta}(L(\widehat{\Lambda}))=L_{\mathfrak{g}^{\mathfrak{\natural}}}\left(\widehat{\Lambda}^{\natural}\right)
$$

In particular $H_{\theta}(L(\widehat{\Lambda}))$ is in the category $K L_{k^{\prime}}$.
Moreover, under the identification of the centralizer \mathfrak{g}^{f} of f in \mathfrak{g} with $\mathfrak{g}_{0} \oplus \mathfrak{g}_{1 / 2}$ via $\operatorname{ad}(f)$ (see Example 6.2 of [36]), we get that x acts on $H_{\theta}(L(\widehat{\Lambda}))$ via $J_{0}^{\{f\}}$, and $J^{\{f\}}$ is the conformal vector of $W(k, \theta)$ (see the proof of Theorem 5.1 of [36]). Since the level is collapsing we know, by Proposition 4.1 of [4], that the conformal vector of $W_{k}(\mathfrak{g}, \theta)$ coincides with the Segal-Sugawara vector conformal $\omega_{\mathfrak{g}^{\natural}}$ of $V_{k^{\prime}}\left(\mathfrak{g}^{\natural}\right)$ hence, by (6.14) of [36] again, we obtain that the $\left(\omega_{\mathfrak{g}^{\natural}}\right)_{0}$ acts on the lowest component of $H_{\theta}(L(\widehat{\Lambda}))$ by $c I$ with

$$
\begin{equation*}
c=\frac{(\mu+2 \rho, \mu)}{2\left(k+h^{\vee}\right)}-\mu(x) \tag{12}
\end{equation*}
$$

Now condition (2) implies that $\mu^{\natural}=0$, so $\mu=\ell \theta$ and

$$
\frac{(\mu+2 \rho, \mu)}{2\left(k+h^{\vee}\right)}-\mu(x)=\frac{(\ell \theta+2 \rho, \ell \theta)}{2\left(k+h^{\vee}\right)}-\ell=0
$$

By using formula (4), we get

$$
\begin{equation*}
\frac{2 \ell^{2}+\left(2 h^{\vee}-2\right) \ell}{2\left(k+h^{\vee}\right)}-\ell=\frac{\ell^{2}-(k+1) \ell}{k+h^{\vee}}=0 \tag{13}
\end{equation*}
$$

- Consider first the case $k=-h^{\vee} / 2+1$ (this holds for $\mathfrak{g}=D_{2 n}, n \geq 2$ and $\left.\mathfrak{g}=\operatorname{osp}(n+4 m+8 \mid n), n \geq 0\right)$. Then (13) gives that

$$
\begin{equation*}
\frac{2 \ell^{2}+\left(h^{\vee}-4\right) \ell}{h^{\vee}+2}=0 \tag{14}
\end{equation*}
$$

We get $\ell=0$ or $2 \ell+h^{\vee}-4=0$.

- Next we consider the case $k=-h^{\vee} / 6-1$. We get

$$
\begin{equation*}
\frac{6 \ell^{2}+h^{\vee} \ell}{5 h^{\vee}-6}=0 \tag{15}
\end{equation*}
$$

We conclude that $\ell=0$ or $\ell=-\frac{h^{\vee}}{6}$.

By using the above analysis and properties of Hamiltonian reduction, we get the following lemma, which extends a result of [15] for Lie algebras to the super case.

Lemma 4.1. Assume that $k=-\frac{h^{\vee}}{6}-1$ and \mathfrak{g} is one of the Lie algebras of exceptional Deligne's series A_{2}, G_{2}, $D_{4}, F_{4}, E_{6}, E_{7}, E_{8}$, or $\mathfrak{g}=\operatorname{psl}(m \mid m)(m \geq 2), \operatorname{osp}(n+8 \mid n)(n \geq 2), \operatorname{spo}(2 \mid 1), F(4), G(3)$ (for both choices of $\theta)$.

Assume that $L(\lambda)$ is a $V_{k}(\mathfrak{g})$-module in the category \mathcal{O}. Then one of the following condition holds:
(1) $\lambda\left(\alpha_{0}^{\vee}\right) \in \mathbb{Z}_{\geq 0}$;
(2) $\bar{\lambda}$ is either 0 or $\frac{-h^{\vee}}{6} \theta$, where $\bar{\lambda}$ is the restriction of λ to \mathfrak{h}.

Proof. By Theorem 2.1, if $L(\lambda)$ is a $V_{k}(\mathfrak{g})$-module for which $\lambda\left(\alpha_{0}^{\vee}\right) \notin \mathbb{Z}_{\geq 0}$, then $H_{\theta}(L(\lambda))$ is an irreducible $W_{k}(\mathfrak{g}, \theta)=H_{\theta}\left(V_{k}(\mathfrak{g})\right)$-module. The conditions on \mathfrak{g} exactly correspond to the cases when $W_{k}(\mathfrak{g}, \theta)$ is onedimensional (cf. [4], [15]), so the discussion that precedes the Lemma and relation (15) imply that $\bar{\lambda}$ is as in (2).

Lemma 4.1 implies:
Theorem 4.2. Assume that the level k and the Lie superalgebra \mathfrak{g} satisfy one of the following conditions:
(1) $k=-\frac{h^{\vee}}{6}-1$ and \mathfrak{g} is one of the Lie algebras of exceptional Deligne's series $A_{2}, G_{2}, D_{4}, F_{4}, E_{6}, E_{7}, E_{8}$, or $\mathfrak{g}=\operatorname{psl}(m \mid m)(m \geq 2), \operatorname{osp}(n+8 \mid n)(n \geq 2), \operatorname{spo}(2 \mid 1), F(4), G(3)$ (for both choices of $\theta)$;
(2) $k=-h^{\vee} / 2+1$ and $\mathfrak{g}=\operatorname{osp}(n+4 m+8 \mid n), n \geq 2, m \geq 0$.
(3) $k=-h^{\vee} / 2+1$ and $\mathfrak{g}=D_{2 m}, m \geq 2$.
(4) $k=-10$ and $\mathfrak{g}=E_{8}$.

Then $V_{k}(\mathfrak{g})$ is the unique irreducible $V_{k}(\mathfrak{g})$-module in the category $K L_{k}$.

Proof. If the Lie superalgebra \mathfrak{g} is as in (1), then Lemma 4.1 and Remark 3.5 imply that $\bar{\lambda}$ is either 0 or $\frac{-h^{\vee}}{6} \theta$. Since in all cases in (1) we have that $h^{\vee} \in \mathbb{Z}_{\geq 0}$, one obtains that the irreducible highest weight \mathfrak{g}-module with highest weight $\bar{\lambda}=\frac{-h^{\vee}}{6} \theta$ cannot be finite-dimensional. Therefore $L(\lambda)$ can not be a module in $K L_{k}$. This proves that $\bar{\lambda}=0$ and therefore $V_{k}(\mathfrak{g})$ is the unique irreducible $V_{k}(\mathfrak{g})$-module in the category $K L_{k}$.

Let us consider the case $\mathfrak{g}=\operatorname{osp}(n+4 m+8 \mid n)$. Then for every $m \in \mathbb{Z}_{\geq 0}$ we have:

$$
\begin{align*}
& h^{\vee}=4 m+6 \tag{16}\\
& k=-h^{\vee} / 2+1=-2(m+1) \tag{17}\\
& 2 \ell+h^{\vee}-4 \neq 0 \quad \forall \ell \in \frac{1}{2} \mathbb{Z}_{\geq 0} \tag{18}
\end{align*}
$$

We prove the claim by induction. In the case $m=0$, the claim was proved in (1). Assume now that the claim holds for $\mathfrak{g}^{\prime}=\operatorname{osp}(n+4(m-1)+8, n)$, and $k^{\prime}=-2 m$.

By Theorem 2.3, $k=-2(m+1)$ is a collapsing level and $W_{k}(\mathfrak{g}, \theta)=V_{k^{\prime}}\left(\mathfrak{g}^{\prime}\right)$.
By inductive assumption $V_{k^{\prime}}\left(\mathfrak{g}^{\prime}\right)$ is the unique irreducible $V_{k^{\prime}}\left(\mathfrak{g}^{\prime}\right)$ in the category $K L_{k^{\prime}}$. By applying (14) and (18) we get that $\ell=0$ and therefore $V_{k}(\mathfrak{g})$ is the unique irreducible $V_{k}(\mathfrak{g})$-module in the category $K L_{k}$. The assertion now follows by induction on m.
(3) is a special case of (2), by taking $n=0$.
(4) follows from the fact that $H_{\theta}\left(V_{-10}\left(E_{8}\right)\right)=V_{-4}\left(E_{7}\right)$ and case (1) by applying formula (13).

Remark 4.3. Theorem 4.2 can be also proved by non-cohomological methods, using explicit formulas for singular vectors and Zhu algebra theory. As an illustration, we shall present in Theorem 8.6 a direct proof in the case of $D_{2 n}$ at level $k=-h^{\vee} / 2+1$.

In the following sections we shall study some other applications of collapsing levels. We shall restrict our analysis to the case of Lie algebras. In what follows we let $\omega_{1}, \ldots, \omega_{n}$ be the fundamental weights for \mathfrak{g} and $\Lambda_{0}, \ldots, \Lambda_{n}$ the fundamental weights for $\widehat{\mathfrak{g}}$.

5 On complete reducibility in the category $K L_{k}$

In this Section we prove complete reducibility results in the category $K L_{k}$ when \mathfrak{g} is a Lie algebra. We start with a preliminary result, which also holds in the super setting.

Lemma 5.1. Assume that the Lie superalgebra \mathfrak{g} and level k satisfy the conditions of Theorem 4.2. Assume that M is a highest weight $V_{k}(\mathfrak{g})$-module from the category $K L_{k}$. Then M is irreducible.

Proof. By using the classification of irreducible modules from Theorem 4.2 we know that the highest weight of M is necessary $k \Lambda_{0}$, and therefore M is a $\mathbb{Z}_{\geq 0^{-}}$graded with respect to $L_{\mathfrak{g}}(0)$. Denote a highest weight vector by $w_{k \Lambda_{0}}$. We have that

$$
L_{\mathfrak{g}}(0) v=0 \quad \Longleftrightarrow \quad v=\nu w_{k \Lambda_{0}} \quad(\nu \in \mathbb{C})
$$

Assume that M is not irreducible. Then it contains a non-zero graded submodule $N \neq M$ with respect to $L_{\mathfrak{g}}(0)$:

$$
N=\bigoplus_{n \in \mathbb{Z}_{\geq 0}} N\left(n+n_{0}\right), \quad L_{\mathfrak{g}}(0)_{\mid N(r)}=r \mathrm{Id}, \quad N\left(n_{0}\right) \neq 0
$$

Since $N \neq M$, we have that $n_{0}>0$, otherwise $w_{k \Lambda_{0}} \in M$.
We can consider $N\left(n_{0}\right)$ as a finite-dimensional module for \mathfrak{g} and for the Zhu algebra $A\left(V_{k}(\mathfrak{g})\right)$. Note that Theorem 4.2 and Proposition 3.2 imply that any irreducible finite-dimensional $A\left(V_{k}(\mathfrak{g})\right)$-module is trivial. Since the Casimir element $C_{\mathfrak{g}}$ of \mathfrak{g} acts on $N\left(n_{0}\right)$ as the non-zero constant $2\left(k+h^{\vee}\right) n_{0}$, we conclude that $C_{\mathfrak{g}}$ acts by the same constant on any irreducible \mathfrak{g}-subquotient of $N\left(n_{0}\right)$. But any irreducible subquotient of $N\left(n_{0}\right)$ is an
irreducible finite-dimensional $A\left(V_{k}(\mathfrak{g})\right)$-module, and therefore it is trivial. This implies that $C_{\mathfrak{g}}$ acts non-trivially on a trivial \mathfrak{g}-module. A contradiction.

The following Lemma is a consequence of [28, Theorem 0.1].

Lemma 5.2. [28] Assume that \mathfrak{g} is a simple Lie algebra and k is a rational number, $k>-h^{\vee}$. Then, in the category of $V_{k}(\mathfrak{g})$-modules, we have: $\operatorname{Ext}^{1}\left(V_{k}(\mathfrak{g}), V_{k}(\mathfrak{g})\right)=(0)$.

Theorem 5.3. Assume that \mathfrak{g} is a simple Lie algebra and that the level k satisfies the conditions of Theorem 4.2. Then any $V_{k}(\mathfrak{g})$-module M from the category $K L_{k}$ is completely reducible.

Proof. Since M is in $K L_{k}$ we have that any irreducible subquotient of M is isomorphic to $V_{k}(\mathfrak{g})$. M has finite length. This implies that M is $\mathbb{Z}_{\geq 0}$ - graded:

$$
M=\bigoplus_{n \in \mathbb{Z} \geq 0} M(n), \quad L_{\mathfrak{g}}(0)_{\mid M(r)}=r \mathrm{Id}
$$

Assume that $M(0)=\operatorname{span}_{\mathbb{C}}\left\{w_{1}, \ldots, w_{s}\right\}$. Then by Lemma 5.1 we have that $V_{k}(\mathfrak{g}) w_{i} \cong V_{k}(\mathfrak{g})$ for every $i=$ $1, \ldots, s$. Now using Lemma 5.2 we get $M \cong \oplus V_{k}(\mathfrak{g}) w_{i}$ and therefore M is completely reducible.

Remark 5.4. We expect that the previous theorem holds in the case when \mathfrak{g} is the Lie superalgebra from Theorem 4.2. We shall study this case in [7].

We shall now prove much more general result on complete reducibility in $K L_{k}$.

Theorem 5.5. Assume that level $k \in \mathbb{Q}, k>-h^{\vee}$, and the simple Lie algebra \mathfrak{g} satisfy the following property:

Every highest weight $V_{k}(\mathfrak{g})$-module in $K L_{k}$ is irreducible.

Then the category $K L_{k}$ is semi-simple.

Proof. We shall present a sketch of the proof and omit some standard representation theoretic arguments which can be found in [20] and [28].

- Since every irreducible $V_{k}(\mathfrak{g})$-module in $K L_{k}$ is isomorphic to $L(\lambda)$ for certain rational, non-critical weight λ, then $\left[28\right.$, Theorem 0.1] implies that $\operatorname{Ext}^{1}(L(\lambda), L(\lambda))=(0)$ in the category $K L_{k}$.
- We prove that in the category $K L_{k}$ we have

$$
\begin{equation*}
E x t^{1}\left(L_{1}, L_{2}\right)=(0) \tag{20}
\end{equation*}
$$

for any two irreducible modules L_{1} and L_{2} from $K L_{k}$.
It remains to consider the case $L_{1} \neq L_{2}$. Take an exact sequence in $K L_{k}$:

$$
0 \rightarrow L\left(\lambda_{1}\right) \rightarrow M \rightarrow L\left(\lambda_{2}\right) \rightarrow 0
$$

where $\lambda_{1} \neq \lambda_{2}$. Then M contains a singular vector $w_{\lambda_{1}}$ of highest weight λ_{1} and a subsingular vector $w_{\lambda_{2}}$ of weight λ_{2} and $w_{\lambda_{1}}$ generates a submodule isomorphic to $L\left(\lambda_{1}\right)$. Consider the case $\lambda_{1}-\lambda_{2} \notin Q_{+}$. Then λ_{2} is a maximal element of the set $\Omega(M)$ of weights of M, and therefore the subsingular vector $w_{\lambda_{2}}$ in M of weight λ_{2} is a singular vector. By (19), it generates an irreducible module isomorphic to $L\left(\lambda_{2}\right)$ and we conclude that $M \cong L\left(\lambda_{1}\right) \oplus L\left(\lambda_{2}\right)$.

If $\lambda_{1}-\lambda_{2} \in Q_{+}$we can use the contravariant functor $M \mapsto M^{\sigma}$ and get an exact sequence

$$
0 \rightarrow L\left(\lambda_{2}\right) \rightarrow M^{\sigma} \rightarrow L\left(\lambda_{1}\right) \rightarrow 0
$$

Since M^{σ} is again a $V_{k}(\mathfrak{g})$-module in $K L_{k}($ cf. Lemma 3.6$)$ by the first case we have that $M^{\sigma}=$ $L\left(\lambda_{1}\right) \oplus L\left(\lambda_{2}\right)$. This implies that

$$
M=L\left(\lambda_{1}\right)^{\sigma} \oplus L\left(\lambda_{2}\right)^{\sigma}=L\left(\lambda_{1}\right) \oplus L\left(\lambda_{2}\right)
$$

- Assume now that M is a finitely generated module from $K L_{k}$. Then from [20, Proposition 3.1] we see that M has an increasing filtration

$$
\begin{equation*}
(0)=M_{0} \subseteq M_{1} \subseteq \cdots \tag{21}
\end{equation*}
$$

such that

1. for every $j \in \mathbb{Z}_{>0}, M_{j} / M_{j-1}$ is an highest weight module in category \mathcal{O};
2. for any weight λ of M, there exists r such that $\left(M / M_{r}\right)_{\lambda}=0$.

Since M is finitely generated as $\widehat{\mathfrak{g}}$-module, we can assume that its generators are weight vectors of weights say $\mu_{1}, \ldots \mu_{p}$. Since they are a finite number there certainly exists t such that $\left(M / M_{t}\right)_{\mu_{i}}=0$ for all $i=1, . ., p$. Hence the filtration (21) is finite and stops at $M=M_{t}$. Since M is in category $K L_{k}$, we have that the factors of (21) are in category $K L_{k}$. Hence, by our assumption, they are irreducible. Therefore (21) is a composition series of finite length Using assumption (19), relation (20) and induction on t we get that

$$
M \cong \bigoplus_{j=1}^{t} L\left(\lambda_{j}\right)
$$

- Finally we shall consider the case when M is not finitely generated. Since M is in $K L_{k}$, it is countably generated. So $M=\cup_{n=1}^{\infty} M^{(n)}$ such that each $M^{(n)}$ is finitely generated $V_{k}(\mathfrak{g})$-module. By previous case
$M^{(n)}$ is completely reducible, so:

$$
\begin{equation*}
M^{(n)}=\bigoplus_{i=1}^{n_{i}} L\left(\lambda_{i, n}\right) \tag{22}
\end{equation*}
$$

Therefore M is a sum of irreducible modules from $K L_{k}$ and by using classical algebraic arguments one can see that M is a direct sum of countably many irreducible modules from $K L_{k}$ appearing in decompositions (22).

The claim follows.

In order to apply Theorem 5.5, the basic step is to check relation (19). We have the following method.

Lemma 5.6. Let $k \in \mathbb{Q} \backslash \mathbb{Z}_{\geq 0}$. Assume that $H_{\theta}(U)$ is an irreducible, non-zero $W_{k}(\mathfrak{g}, \theta)=H_{\theta}\left(V_{k}(\mathfrak{g})\right)$-module for every non-zero highest weight $V_{k}(\mathfrak{g})$-module U from the category $K L_{k}$. Then every highest weight $V_{k}(\mathfrak{g})$-module in $K L_{k}$ is irreducible.

Proof. Assume that M is a highest weight $V_{k}(\mathfrak{g})$-module in $K L_{k}$. Then $H_{\theta}(M)$ is an irreducible $H_{\theta}\left(V_{k}(\mathfrak{g})\right)-$ module. If M is not irreducible, then it contains a highest weight submodule U such that $\{0\} \varsubsetneqq U \varsubsetneqq M$. Modules U and M / U are again highest weight modules in $K L_{k}$. By the assumption of the Lemma we have that $H_{\theta}(U)$ is a non-trivial submodule of $H_{\theta}(M)$. Irreducibility of $H_{\theta}(M)$ implies that $H_{\theta}(U)=H_{\theta}(M)$, and therefore $H_{\theta}(M / U)=\{0\}$. A contradiction.

Theorem 5.7. Assume that \mathfrak{g} is a simple Lie algebra and $k \in \mathbb{C} \backslash \mathbb{Z}_{\geq 0}$ such that $W_{k}(\mathfrak{g}, \theta)$ is rational. Then $K L_{k}$ is a semi-simple category.

Proof. Assume that $\widetilde{L}(\lambda)$ is a highest weight $V_{k}(\mathfrak{g})$-module in $K L_{k}$. Clearly $\lambda\left(\alpha_{0}^{\vee}\right) \notin \mathbb{Z}_{\geq 0}$ and by Theorem 2.1 $H_{\theta}(\widetilde{L}(\lambda)) \neq(0)$. Since $H_{\theta}(\widetilde{L}(\lambda))$ is non-zero highest weight module for the rational vertex algebra $W_{k}(\mathfrak{g}, \theta)$, we conclude that $H_{\theta}(\widetilde{L}(\lambda))$ is irreducible. Now assertion follows from Theorem 5.5 and Lemma 5.6.

Remark 5.8. The previous theorem proves that the category $K L_{k}$ is semisimple in the following (nonadmissible) cases:

- $\mathfrak{g}=D_{4}, E_{6}, E_{7}, E_{8}$ and $k=-\frac{h^{\vee}}{6}$ using results from [39].

Moreover, using Theorem 5.5 and Lemma 5.6 we can prove the semi-simplicity of $K L_{k}$ for all collapsing levels not accounted by Theorem 1.1. We list here only non-admissible levels, since in admissible case $K L_{k}$ is semi-simple by [12].

Theorem 5.9. The category $K L_{k}$ is semisimple in the following cases:
(1) $\mathfrak{g}=D_{\ell}, \ell \geq 3$ and $k=-2$;
(2) $\mathfrak{g}=B_{\ell}, \ell \geq 2$ and $k=-2$;
(3) $\mathfrak{g}=A_{\ell}, \ell \geq 2$ and $k=-1$;
(4) $\mathfrak{g}=A_{2 \ell-1}, \ell \geq 2, k=-\ell$;
(5) $\mathfrak{g}=D_{2 \ell-1}, \ell \geq 3$ and $k=-2 \ell+3$;
(6) $\mathfrak{g}=C_{\ell}, k=-1-\ell / 2$;
(7) $\mathfrak{g}=E_{6}, k=-4$;
(8) $\mathfrak{g}=E_{7}, k=-6$;
(9) $\mathfrak{g}=F_{4}, k=-3$.

Proof. We will give a proof of relations (1) and (2) in Corollaries 6.8 and 7.7 , respectively. Case (1) for $\ell \neq 3$ will follow from Theorem 5.7. Note also that case (1) for $\ell=3$ is a special case of case (4), and that case (2) for $\ell=2$ is a special case of (6). The proof in cases (3) - (6) is similar, and it uses the classification of irreducible modules from [10], [11], [16] and the results on collapsing levels [4]. Cases $(7)-(9)$ are reduced to cases we have already treated. Here are some details.

Case (3):

- [16], [4] $H_{\theta}\left(V_{-1}\left(A_{\ell}\right)\right)$ is isomorphic to the Heisenberg vertex algebra $M(1)$ of central charge $c=1$
- By using the fact that every highest weight $M(1)$-module is irreducible, we see that if U is a highest weight $V_{-1}\left(A_{\ell}\right)$-module in $K L_{-1}$, then $H_{\theta}(U)$ is a non-trivial irreducible $M(1)$-module.

Case (4):

- [16], [4] $H_{\theta}\left(V_{-\ell}\left(A_{2 \ell-1}\right)\right)=V_{-\ell+1}\left(A_{2 \ell-3}\right)$.
- For $\ell=2$, we have that every highest weight $V_{-\ell+1}\left(A_{2 \ell-3}\right)=V_{-1}(s l(2))$-module $\widetilde{L}(\lambda)$ in $K L_{-1}$ with highest weight $\lambda=-(1+j) \Lambda_{0}+j \Lambda_{1}, j \in \mathbb{Z}_{\geq 0}$, is irreducible.
- By induction, we see that for every highest weight $V_{-\ell}\left(A_{2 \ell-1}\right)$-module U in $K L_{-\ell}, H_{\theta}(U)$ is a non-trivial irreducible $V_{-\ell+1}\left(A_{2 \ell-3}\right)$-module.

Case (5)

- $H_{\theta}\left(V_{-2 \ell+3}\left(D_{2 \ell-1}\right)\right) \cong V_{-2 \ell+5}\left(D_{2 \ell-3}\right)$.
- By induction we see that for or every highest weight $V_{-2 \ell+3}\left(D_{2 \ell-1}\right)-$ module U in $K L_{-2 \ell+3}, H_{\theta}(U)$ is a non-trivial irreducible $V_{-2 \ell+5}\left(D_{2 \ell-3}\right)$-module.

Case (6)

- $H_{\theta}\left(V_{-1-\ell / 2}\left(C_{\ell}\right)\right) \cong V_{-1 / 2-\ell / 2}\left(C_{\ell-1}\right)$.
- For $\ell=2$, we have that every highest weight $V_{-1 / 2-\ell / 2}\left(C_{\ell-1}\right)=V_{-3 / 2}(s l(2))-$ module in $K L_{-3 / 2}$ is irreducible.
- By induction, we see that for every highest weight $V_{-1-\ell / 2}\left(C_{\ell}\right)-\operatorname{module} U$ in $K L_{-1-\ell / 2}, H_{\theta}(U)$ is a non-trivial irreducible $V_{-1 / 2-\ell / 2}\left(C_{\ell-1}\right)$-module.

The proof follows by applying Theorem 5.5 and Lemma 5.6.

Cases (7) - (8)

We have

$$
H_{\theta}\left(V_{-4}\left(E_{6}\right)\right)=V_{-1}\left(A_{3}\right), \quad H_{\theta}\left(V_{-6}\left(E_{7}\right)\right)=V_{-2}\left(D_{6}\right)
$$

and these cases are settled in (3) and Theorem 1.1 (3) respectively. Case (9) follows from the fact that $H_{\theta}\left(V_{-3}\left(F_{4}\right)\right)$ is isomorphic to the admissible affine vertex algebra $V_{-\frac{1}{2}}\left(C_{3}\right)$ which is semisimple in $K L_{-1 / 2}$ (cf. [1]).

Remark 5.10. The problem of complete-reducibility of modules in $K L_{k}$ when \mathfrak{g} is a Lie superalgebra will be also studied in [7]. An important tool in the description of the category $K L_{k}$ will be the conformal embedding of $\widetilde{V}_{k}\left(\mathfrak{g}_{0}\right)$ to $V_{k}(\mathfrak{g})$ where \mathfrak{g}_{0} is the even part of \mathfrak{g}.

Note that in the category \mathcal{O} we can have indecomposable $V_{k}(\mathfrak{g})$-modules in some cases listed in Theorem 5.9. See [10, Remark 5.8] for one example.

6 The vertex algebra $V^{-2}\left(D_{\ell}\right)$ and its quotients

In this section we exploit Hamiltonian reduction and the results on conformal embeddings from [4] to investigate the quotients of the vertex algebra $V^{-2}\left(D_{\ell}\right)$. In particular we are interested in a non-simple quotient $\mathcal{V}_{-2}\left(D_{\ell}\right)$ which appears in the analysis of certain dual pairs (see [6]) as well as in the simple quotient $V_{-2}\left(D_{\ell}\right)$. We will show that the vertex algebra $\mathcal{V}_{-2}\left(D_{\ell}\right)$ has infinitely many irreducible modules in the category $K L^{-2}$, while by [15], $V_{-2}\left(D_{\ell}\right)$ has finitely many irreducible modules in $K L_{-2}$. Recall that -2 is a collapsing level for D_{ℓ} [4].

Consider the vector

$$
\begin{equation*}
w_{1}:=\left(e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{\epsilon_{3}+\epsilon_{4}}(-1)-e_{\epsilon_{1}+\epsilon_{3}}(-1) e_{\epsilon_{2}+\epsilon_{4}}(-1)+e_{\epsilon_{1}+\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1)\right) \mathbf{1} \tag{23}
\end{equation*}
$$

It is a singular vector in $V^{-2}\left(D_{\ell}\right)$ (cf. [15]). Note that this vector is contained in the subalgebra $V^{-2}\left(D_{4}\right)$ of $V^{-2}\left(D_{\ell}\right)$.

By using the explicit expression for singular vectors v_{n} in $V^{n-\ell+1}\left(D_{\ell}\right)$ (see (28)), we have that

$$
\begin{equation*}
w_{2}:=v_{\ell-3}=\left(\sum_{i=2}^{\ell} e_{\epsilon_{1}-\epsilon_{i}}(-1) e_{\epsilon_{1}+\epsilon_{i}}(-1)\right)^{\ell-3} \mathbf{1} \tag{24}
\end{equation*}
$$

is a singular vector in $V^{-2}\left(D_{\ell}\right)$.
For $\ell=4$ we also have a third singular vector (cf. [40])

$$
w_{3}:=\left(e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{\epsilon_{3}-\epsilon_{4}}(-1)-e_{\epsilon_{1}+\epsilon_{3}}(-1) e_{\epsilon_{2}-\epsilon_{4}}(-1)+e_{\epsilon_{1}-\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1)\right) \mathbf{1} .
$$

6.1 The vertex algebra $\mathcal{V}_{-2}\left(D_{\ell}\right)$ for $\ell \geq 4$

Define the vertex algebra

$$
\begin{equation*}
\mathcal{V}_{-2}\left(D_{\ell}\right)=V^{-2}\left(D_{\ell}\right) / J_{\ell} \tag{25}
\end{equation*}
$$

where

$$
J_{\ell}=\left\langle w_{1}, w_{3}\right\rangle \quad(\ell=4), \quad J_{\ell}=\left\langle w_{1}\right\rangle \quad(\ell \geq 5) .
$$

The following proposition is essentially proven in [6].

Proposition 6.1.

(1) There is a non-trivial vertex algebra homomorphism $\bar{\Phi}: \mathcal{V}_{-2}\left(D_{\ell}\right) \rightarrow M_{2 \ell}$ where $M_{2 \ell}$ the Weyl vertex algebra of rank ℓ.
(2) $\mathcal{V}_{-2}\left(D_{\ell}\right)$ is not simple, and $L\left((-2-t) \Lambda_{0}+t \Lambda_{1}\right), t \in \mathbb{Z}_{\geq 0}$ are $\mathcal{V}_{-2}\left(D_{\ell}\right)$-modules.

Proof. The homomorphism $\Phi: V^{-2}\left(D_{\ell}\right) \rightarrow M_{2 \ell}$ was constructed in [6, Section 7]. By direct calculation one proves that $\Phi\left(w_{1}\right)=0$ for $\ell \geq 4$ and $\Phi\left(w_{3}\right)=0$ for $\ell=4$. Finally [6, Lemma 7.1] implies that $L\left((-2-t) \Lambda_{0}+\right.$ $\left.t \Lambda_{1}\right), t \in \mathbb{Z}_{\geq 0}$ are $\mathcal{V}_{-2}\left(D_{\ell}\right)$-modules. Since the simple vertex algebra $V_{-2}\left(D_{\ell}\right)$ has only finitely many irreducible modules in the category \mathcal{O} [15], we have that $\mathcal{V}_{-2}\left(D_{\ell}\right)$ is not simple.

Next, we exploit the fact that in the case $\mathfrak{g}=D_{\ell}, k=-2$ is a collapsing level, i.e., in the affine W-algebra $W^{k}(\mathfrak{g}, \theta)$, all generators $G^{\{u\}}$ at conformal weight $3 / 2, u \in \mathfrak{g}_{-1 / 2}$, belong to the maximal ideal (see [4] for details). This implies that there exists a non-trivial ideal I in $V^{-2}(\mathfrak{g})$ such that $G^{\{u\}} \in H_{\theta}(I)$ for all $u \in \mathfrak{g}_{-1 / 2}$. Note also that $\mathfrak{g}^{\natural}=A_{1} \oplus D_{\ell-2}$, so we have that $V^{\ell-4}\left(A_{1}\right) \otimes V^{0}\left(D_{\ell-2}\right)$ is a subalgebra of $W^{-2}\left(D_{\ell}, \theta\right)$. In the case $\ell=4$ we identify D_{2} with $A_{1} \oplus A_{1}$.

Lemma 6.2. We have

- $x_{(-1)} \mathbf{1} \in H_{\theta}\left(J_{\ell}\right)$ for all $x \in D_{\ell-2} \subset \mathfrak{g}^{\natural}$,
- $G^{\{u\}} \in H_{\theta}\left(J_{\ell}\right)$ for all $u \in \mathfrak{g}_{-1 / 2}$.

Proof. Assume that $\ell \geq 5$. Since w_{1} is a singular vector in $V^{-2}\left(D_{\ell}\right)$, the ideal J_{ℓ} is a highest weight module of highest weight $\lambda=-2 \Lambda_{0}+\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}$. Now, the Main Theorem from [12] implies that $H_{\theta}\left(J_{\ell}\right)$ is a non-trivial highest weight module. By formula [36, (6.14)] the highest weight is $\left(0, \omega_{2}\right)$ and, by (12), the conformal weight of its highest weight vector is 1 . Up to a non-zero constant, there is only one vector in $W^{-2}\left(D_{\ell}, \theta\right)=V^{\ell-4}\left(A_{1}\right) \otimes V^{0}\left(D_{\ell-2}\right)$ that has these properties, namely $J_{(-1)}^{\left\{e_{\epsilon_{3}}+\epsilon_{4}\right\}} \mathbf{1}$, and therefore $H_{\theta}\left(J_{\ell}\right)$ contains all generators of $V^{0}\left(D_{\ell-2}\right)$.

In the case $\ell=4, w_{1}$ and w_{3} generate submodules N_{1} and N_{3} of highest weights $\lambda_{1}=-2 \Lambda_{0}+\epsilon_{1}+$ $\epsilon_{2}+\epsilon_{3}+\epsilon_{4}, \lambda_{3}=-2 \Lambda_{0}+\epsilon_{1}+\epsilon_{2}+\epsilon_{3}-\epsilon_{4}$, respectively. Applying the same arguments as above we get that $J_{(-1)}^{\left\{e_{\epsilon_{3} \pm \epsilon_{4}}\right\}} \mathbf{1} \in H_{\theta}(I)$, which implies that $H_{\theta}\left(J_{\ell}\right)$ contains all generators of $V^{0}\left(D_{2}\right)=V^{0}\left(A_{1}\right) \otimes V^{0}\left(A_{1}\right)$.

Now, claim follows by applying the action of generators of $V^{0}\left(D_{\ell-2}\right)$ to $G^{\{u\}}$ (see [4]).
Proposition 6.3. We have
(1) $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)=V^{\ell-4}\left(A_{1}\right)$.
(2) $H_{\theta}\left(L\left((-2-t) \Lambda_{0}+t \Lambda_{1}\right)\right) \cong L_{A_{1}}\left((\ell-4-t) \Lambda_{0}+t \Lambda_{1}\right), t \in \mathbb{Z}_{\geq 0}$.
(3) The set $\left\{L\left((-2-t) \Lambda_{0}+t \Lambda_{1}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}$ provides a complete list of irreducible $\mathcal{V}_{-2}\left(D_{\ell}\right)$-modules from the category $K L^{-2}$.

Proof. By Lemma 6.2 we see that the vertex algebra $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)$ is generated only by $x_{(-1)} \mathbf{1}, x \in A_{1} \subset D_{\ell}^{\natural}$. So there are only two possibilities: either $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)=V^{\ell-4}\left(A_{1}\right)$ or $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)=V_{\ell-4}\left(A_{1}\right)$. Moreover, for every $t \in \mathbb{Z}_{\geq 0}, H_{\theta}\left(L\left((-2-t) \Lambda_{0}+t \Lambda_{1}\right)\right)$ must be the irreducible $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)-$ module with highest weight $t \omega_{1}$ with respect to A_{1}. So $H_{\theta}\left(L\left((-2-t) \Lambda_{0}+t \Lambda_{1}\right)\right) \cong L_{A_{1}}\left((\ell-4-t) \Lambda_{0}+t \Lambda_{1}\right), t \in \mathbb{Z}_{\geq 0}$. Therefore, $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)$ contains infinitely many irreducible modules, which gives that $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)=V^{\ell-4}\left(A_{1}\right)$. In this way we have proved claims (1) and (2).

Let us now prove claim (3).
Assume that $L\left(k \Lambda_{0}+\mu\right)\left(\mu \in P_{+}, k=-2\right)$ is an irreducible $\mathcal{V}_{k}\left(D_{\ell}\right)$-module in the category $K L^{k}$. Then $H_{\theta}\left(L\left(k \Lambda_{0}+\mu\right)\right)$ is a non-trivial irreducible $V^{\ell-4}\left(A_{1}\right)$-module. The representation theory of $V^{\ell-4}\left(A_{1}\right)$ implies that:

$$
H_{\theta}\left(L\left(k \Lambda_{0}+\mu\right)\right)=L_{A_{1}}\left((\ell-4-j) \Lambda_{0}+j \Lambda_{1}\right) \quad \text { for } j \in \mathbb{Z}_{\geq 0}
$$

Since $D_{\ell}^{\natural}=A_{1} \times D_{\ell-2}$, we conclude that $\mu^{\natural}=j \omega_{1}$ and therefore, by (5),

$$
\mu=j \omega_{1}+s \omega_{2}=(s+j) \epsilon_{1}+s \epsilon_{2} \quad\left(s \in \mathbb{Z}_{\geq 0}\right)
$$

By using the action of $L(0)=\omega_{0}$ on the lowest component of $H_{\theta}\left(L\left(k \Lambda_{0}+\mu\right)\right)$ we get

$$
\frac{(\mu+2 \rho, \mu)}{2\left(k+h^{\vee}\right)}-\mu(x)=\frac{j(j+2)}{4(\ell-2)} \quad\left(x=\theta^{\vee} / 2\right)
$$

Since $2\left(k+h^{\vee}\right)=2(-2+2 \ell-2)=4(\ell-2)$ and $\mu(x)=(2 s+j) / 2$ we get

$$
(\mu+2 \rho, \mu)-\left(h^{\vee}-2\right)(2 s+j)=j(j+2)
$$

By direct calculation we get

$$
(\mu+2 \rho, \mu)=(s+j)^{2}+s^{2}+h^{\vee}(s+j)+\left(h^{\vee}-2\right) s,
$$

which gives an equation:

$$
\begin{array}{ll}
& (s+j)^{2}+s^{2}+h^{\vee}(s+j)+\left(h^{\vee}-2\right) s-\left(h^{\vee}-2\right)(2 s+j)=j(j+2) . \\
\Longleftrightarrow & (s+j)^{2}+s^{2}+h^{\vee}(s+j)-\left(h^{\vee}-2\right)(s+j)=j(j+2) . \\
\Longleftrightarrow & (s+j)(s+j+2)=j(j+2) \\
\Longleftrightarrow & s=0 \text { or } s=-2 j-2 .
\end{array}
$$

Since $\mu \in P_{+}$we conclude that $s=0$. Therefore $\mu=j \omega_{1}$ for certain $j \in \mathbb{Z}_{\geq 0}$. The proof of claim (3) is now complete.

6.2 The simple vertex algebra $V_{-2}\left(D_{\ell}\right)$

Next we use the fact that the simple affine W-algebra $W_{-2}\left(D_{\ell}, \theta\right)$ is isomorphic to the simple affine vertex algebra $V_{\ell-4}\left(A_{1}\right)$, for $\ell \geq 4$.

Proposition 6.4. The set $\left\{L\left((-2-j) \Lambda_{0}+j \Lambda_{1}\right) \mid j \in \mathbb{Z}_{\geq 0}, j \leq \ell-4\right\}$ provides a complete list of irreducible $V_{-2}\left(D_{\ell}\right)$-modules from the category $K L_{-2}$.

Proof. Assume that N is an irreducible $V_{-2}\left(D_{\ell}\right)$-module from the category $K L_{-2}$. Then N is also irreducible as $\mathcal{V}_{-2}\left(D_{\ell}\right)$-module, and therefore $N \cong L\left((-2-j) \Lambda_{0}+j \Lambda_{1}\right)$ for certain $j \in \mathbb{Z}_{\geq 0}$. Since $H_{\theta}(N)$ must be an irreducible $H_{\theta}\left(V_{-2}\left(D_{\ell}\right)\right)=W_{-2}\left(D_{\ell}, \theta\right)=V_{\ell-4}\left(A_{1}\right)$-module, we get $j \leq \ell-4$, as desired.

Now we want to describe the maximal ideal in $V^{-2}\left(D_{\ell}\right)$. The next lemma states that any non-trivial ideal in $\mathcal{V}_{-2}\left(D_{\ell}\right)$ is automatically maximal.

Lemma 6.5. Let $\{0\} \neq I \varsubsetneqq \mathcal{V}_{-2}\left(D_{\ell}\right)$ be any non-trivial ideal in $\mathcal{V}_{-2}\left(D_{\ell}\right)$. Then we have
(1) $H_{\theta}(I)$ is the maximal ideal in $V^{\ell-4}\left(A_{1}\right)$.
(2) I is a maximal ideal in $\mathcal{V}_{-2}\left(D_{\ell}\right)$ and $I=L\left(-2(\ell-2) \Lambda_{0}+2(\ell-3) \Lambda_{1}\right)$.

Proof. Assume that I is a non-trivial ideal in $\mathcal{V}_{-2}\left(D_{\ell}\right)$. Then I can be regarded as a $\mathcal{V}_{-2}\left(D_{\ell}\right)$-module in the category $K L^{-2}$ and therefore, by Proposition 6.3, (3), it contains a non-trivial subquotient isomorphic to $L\left((-2-j) \Lambda_{0}+j \Lambda_{1}\right)$ for some $j \in \mathbb{Z}_{\geq 0}$. Since, by part (2) of the aforementioned Proposition, $H_{\theta}(L((-2-$ $\left.\left.j) \Lambda_{0}+j \Lambda_{1}\right)\right) \neq 0$ for every $j \in \mathbb{Z}_{\geq 0}$, we conclude that $H_{\theta}(I)$ is a non-trivial ideal in $H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)=V^{\ell-4}\left(A_{1}\right)$. But since $V^{\ell-4}\left(A_{1}\right), \ell \geq 4$, contains a unique non-trivial ideal, which is automatically maximal, we have that $H_{\theta}(I)$ is a maximal ideal in $V^{\ell-4}\left(A_{1}\right)$. So

$$
H_{\theta}\left(\mathcal{V}_{-2}\left(D_{\ell}\right) / I\right) \cong V_{\ell-4}\left(A_{1}\right)
$$

Assume now that $\mathcal{V}_{-2}\left(D_{\ell}\right) / I$ is not simple. Then it contains a non-trivial singular vector v^{\prime} of weight $-(2+j) \Lambda_{0}+j \Lambda_{1}$ for $j \in \mathbb{Z}_{>0}$. By [12], we have that $H_{\theta}\left(V^{-2}\left(D_{\ell}\right) . v^{\prime}\right)$ is a non-trivial ideal in $V_{\ell-4}\left(A_{1}\right)$ generated by a singular vector of A_{1}-weight $j \omega_{1}$. This is a contradiction. So I is the maximal ideal.

Since the maximal ideal in $V^{\ell-4}\left(A_{1}\right)$ is generated by a singular vector of A_{1}-weight $2(\ell-3) \omega_{1}$ and since the maximal ideal is simple, we conclude that $I=\mathcal{V}_{-2}\left(D_{\ell}\right) \cdot v_{\text {sing }}$ for a certain singular vector $v_{\text {sing }}$ of weight $\lambda=-2(\ell-2) \Lambda_{0}+2(\ell-3) \Lambda_{1}$. It is also clear that this singular vector is unique, up to scalar factor. Therefore, $I=L\left(-2(\ell-2) \Lambda_{0}+2(\ell-3) \Lambda_{1}\right)$.

Note that in the previous lemma we proved the existence of a singular vector which generates the maximal ideal without presenting a formula for such a singular vector. Since the vector in (24) has the correct weight, we also have an explicit expression for this singular vector:

$$
\left(\sum_{i=2}^{\ell} e_{\epsilon_{1}-\epsilon_{i}}(-1) e_{\epsilon_{1}+\epsilon_{i}}(-1)\right)^{\ell-3} \mathbf{1}
$$

Corollary 6.6.

(1) The maximal ideal in $V^{-2}\left(D_{\ell}\right)$ is generated by the vectors w_{1} and w_{2} for $\ell \geq 5$ and by the vectors w_{1}, w_{2}, w_{3} for $\ell=4$.
(2) The homomorphism $\bar{\Phi}: \mathcal{V}_{-2}\left(D_{\ell}\right) \rightarrow M_{2 \ell}$ is injective. In particular, the vertex algebra $\mathcal{V}_{-2}\left(D_{\ell}\right) \otimes V_{-\ell}\left(A_{1}\right)$ is conformally embedded into $V_{-1 / 2}\left(C_{2 \ell}\right)$.
(3) $\left.\operatorname{ch}\left(\mathcal{V}_{-2}\left(D_{\ell}\right)\right)=\operatorname{ch}\left(V_{-2}\left(D_{\ell}\right)\right)+\operatorname{ch} L(-2(\ell-2)) \Lambda_{0}+2(\ell-3) \Lambda_{1}\right)$.

Remark 6.7. D. Gaiotto in [27] has started a study of the decomposition of $M_{2 \ell}$ as a $V^{-2}\left(D_{\ell}\right) \otimes V_{-\ell}\left(A_{1}\right)-$ module in the case $\ell=4$. By combining results from $[6$, Section 8$]$ and results from this Section we get that

$$
\operatorname{Com}\left(V_{-\ell}\left(A_{1}\right), M_{2 \ell}\right) \cong \mathcal{V}_{-2}\left(D_{\ell}\right)
$$

So the vertex algebra responsible for the decomposition of $M_{2 \ell}$ is exactly $\mathcal{V}_{-2}\left(D_{\ell}\right)$. Therefore in the decomposition of $M_{2 \ell}$ only modules for $\mathcal{V}_{-2}\left(D_{\ell}\right)$ can appear. In our forthcoming papers we plan to apply the representation theory of $\mathcal{V}_{-2}\left(D_{\ell}\right)$ to the problem of finding branching rules.

Corollary 6.8. For $\ell \geq 3$ the category $K L_{-2}$ is semi-simple.

Proof. The assertion in the case $\ell \geq 4$ follows from Theorem 5.7 since then $W_{-2}\left(D_{\ell}, \theta\right)=V_{\ell-4}(s l(2))$ is a rational vertex algebra.

In the case $\ell=3$, we have that a highest weight $V_{-2}\left(D_{3}\right)$-module M is isomorphic to $\widetilde{L}\left((-2-j) \Lambda_{0}+j \Lambda_{1}\right)$ where $j \in \mathbb{Z}_{\geq 0}$. The irreducibility of M follows easily from the fact that $H_{\theta}(M)$ is isomorphic to an irreducible $\left.V_{-1}(s l(2))-\operatorname{module} L_{A_{1}}(-1-j) \Lambda_{0}+j \Lambda_{1}\right)$. Now claim follows from Theorem 5.5 and Lemma 5.6.

7 The vertex algebra $V^{-2}\left(B_{\ell}\right)$ and its quotients

In this section let $\ell \geq 2$. Note that $k=-2$ is a collapsing level for $B_{\ell}[4]$, and that the simple affine W-algebra $W_{-2}\left(B_{\ell}, \theta\right)$ is isomorphic to $V_{\ell-\frac{7}{2}}\left(A_{1}\right)$. This implies that $H_{\theta}\left(V_{-2}\left(B_{\ell}\right)\right)=V_{\ell-\frac{7}{2}}\left(A_{1}\right)$. But as in the case of the affine Lie algebra of type D, we can construct an intermediate vertex algebra \mathcal{V} so that $H_{\theta}(\mathcal{V})=V^{\ell-7 / 2}\left(A_{1}\right)$.

Remark 7.1. The formula for a singular vector of conformal weight two in $V^{-2}\left(B_{\ell}\right)$ was given in [15, Theorem 4.2] for $\ell \geq 3$, and in [15, Remark 4.3] for $\ell=2$. Note that, for $\ell \geq 4$, the vector $\sigma\left(w_{2}\right)$ from [15] is equal to the vector w_{1} from relation (23), i.e. it is contained in the subalgebra $V^{-2}\left(D_{4}\right)$. For $\ell=3$, we have

$$
w_{1}=\left(e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{\epsilon_{3}}(-1)-e_{\epsilon_{1}+\epsilon_{3}}(-1) e_{\epsilon_{2}}(-1)+e_{\epsilon_{1}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1)\right) \mathbf{1}
$$

For $\ell=2$, the singular vector of conformal weight two in $V^{-2}\left(B_{2}\right)$ is equal to

$$
w_{1}=\left(e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{-\epsilon_{2}}(-1)+\frac{1}{2} h_{\epsilon_{2}}(-1) e_{\epsilon_{1}}(-1)-e_{\epsilon_{1}-\epsilon_{2}}(-1) e_{\epsilon_{2}}(-1)\right) \mathbf{1}
$$

Consider the singular vector in $V^{-2}\left(B_{\ell}\right)$ denoted by $\sigma\left(w_{2}\right)$ in [15, Theorem 4.2] and [17, Section 7]. Let us denote that singular vector by w_{1} in this paper (see Remark 7.1 for explanation).

Then we have the quotient vertex algebra

$$
\begin{equation*}
\mathcal{V}_{-2}\left(B_{\ell}\right)=V^{-2}\left(B_{\ell}\right) /\left\langle w_{1}\right\rangle \tag{26}
\end{equation*}
$$

As in the case of the vertex algebra $\mathcal{V}_{-2}\left(D_{\ell}\right)$, we have the non-trivial homomorphism $\mathcal{V}_{-2}\left(B_{\ell}\right) \rightarrow M_{2 \ell+1}$.
The proof of the following result is completely analogous to the proof of Proposition 6.3 and it is therefore omitted.

Proposition 7.2. We have

(1) There is a non-trivial homomorphism $\bar{\Phi}: \mathcal{V}_{-2}\left(B_{\ell}\right) \rightarrow M_{2 \ell+1}$.
(2) $H_{\theta}\left(\mathcal{V}_{-2}\left(B_{\ell}\right)\right)=V^{\ell-7 / 2}\left(A_{1}\right)$.
(3) $H_{\theta}\left(L\left((-2-t) \Lambda_{0}+t \Lambda_{1}\right)\right) \cong L_{A_{1}}\left((\ell-7 / 2-t) \Lambda_{0}+t \Lambda_{1}\right), t \in \mathbb{Z}_{\geq 0}$.
(4) The set

$$
\begin{equation*}
\left\{L\left((-2-t) \Lambda_{0}+t \Lambda_{1}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\} \tag{27}
\end{equation*}
$$

provides a complete list of irreducible $\mathcal{V}_{-2}\left(B_{\ell}\right)$-modules from the category $K L^{-2}$.

We have the following result on classification of irreducible modules.
Proposition 7.3. Assume that $\ell \geq 3$. Then the set $\left\{L\left((-2-j) \Lambda_{0}+j \Lambda_{1}\right) \mid j \in \mathbb{Z}_{\geq 0}, j \leq 2(\ell-3)+1\right\}$ provides a complete list of irreducible $V_{-2}\left(B_{\ell}\right)$-modules from the category $K L_{-2}$.

Proof. The proof is analogous to the proof of Proposition 6.4: it uses the exactness of the functor H_{θ} and the representation theory of affine vertex algebras. In particular, we use the result from [8] which gives that the set

$$
\left.\left\{L(-(\ell-7 / 2)-j) \Lambda_{0}+j \Lambda_{1}\right) \mid j \in \mathbb{Z}_{\geq 0}, j \leq 2(\ell-3)+1\right\}
$$

provides a complete list of irreducible $V_{\ell-7 / 2}\left(A_{1}\right)$-modules from the category $K L_{\ell-7 / 2}$.
An important consequence is the simplicity of the vertex algebra $\mathcal{V}_{-2}\left(B_{2}\right)$.
Corollary 7.4. The vertex algebra $\mathcal{V}_{-2}\left(B_{\ell}\right)$ is simple if and only if $\ell=2$. In particular, the set (27) provides a complete list of irreducible modules for $V_{-2}\left(B_{2}\right)$ in $K L_{-2}$.

Proof. Since by Proposition $7.2, \mathcal{V}_{-2}\left(B_{\ell}\right)$ has infinitely many irreducible modules in the category $K L^{-2}$, and, by Proposition $7.3, V^{-2}\left(B_{\ell}\right)$ has finitely many irreducible modules in the category $K L^{-2}$ (if $\ell \geq 3$), we conclude that $\mathcal{V}_{-2}\left(B_{\ell}\right)$ cannot be simple for $\ell \geq 3$.

Let us consider the case $\ell=2$. Assume that $\mathcal{V}_{-2}\left(B_{2}\right)$ is not simple. Then it must contain an ideal I generated by a singular vector of weight $\lambda=(-2-j) \Lambda_{0}+j \Lambda_{1}$ for certain $j>0$. By applying the functor H_{θ}, we get a non-trivial ideal in $V^{-3 / 2}\left(A_{1}\right)$, against the simplicity of $V^{-3 / 2}\left(A_{1}\right)$.

Next we notice that $V^{\ell-7 / 2}\left(A_{1}\right)$ has a unique non-trivial ideal J which is generated by a singular vector of A_{1}-weight $2(\ell-2) \omega_{1}$. The ideal J is maximal and simple (cf. [5]). By combining this with properties of the functor H_{θ} from [12], one proves the existence of a unique maximal ideal I (which is also simple) in $\mathcal{V}_{-2}\left(B_{\ell}\right)$ such that $\left.I \cong L\left(-2(\ell-1) \Lambda_{0}+2(\ell-2) \Lambda_{1}\right)\right)$.

Remark 7.5. The explicit expression for a singular vector which generates I is more complicated that in the case D, and it won't be presented here.

In [6] we constructed a homomorphism $\mathcal{V}_{-2}\left(B_{\ell}\right) \otimes V_{-\ell-1 / 2}\left(A_{1}\right) \rightarrow M_{2 \ell+1}$. The results of this section enable us to find the image of this homomorphism.

Corollary 7.6. We have:
(1) The vertex algebra $\mathcal{V}_{-2}\left(B_{\ell}\right) \otimes V_{-\ell-1 / 2}\left(A_{1}\right)$ is conformally embedded into $V_{-1 / 2}\left(C_{2 \ell+1}\right)$.
(2) The vertex algebra $\mathcal{V}_{-2}\left(B_{\ell}\right)$ for $\ell \geq 3$ contains a unique ideal $\left.I \cong L\left(-2(\ell-1) \Lambda_{0}+2(\ell-2) \Lambda_{1}\right)\right)$ and

$$
\operatorname{ch}\left(\mathcal{V}_{-2}\left(B_{\ell}\right)\right)=\operatorname{ch}\left(V_{-2}\left(B_{\ell}\right)\right)+\operatorname{ch}\left(L\left(-2(\ell-1) \Lambda_{0}+2(\ell-2) \Lambda_{1}\right)\right)
$$

Finally, we apply Theorem 5.5 and prove that $K L_{-2}$ is a semi-simple category.
Corollary 7.7. If $\ell \geq 2$, then every $V_{-2}\left(B_{\ell}\right)$-module in $K L_{-2}$ is completely reducible.

Proof. It suffices to prove that every highest weight $V_{-2}\left(B_{\ell}\right)$-module in $K L_{-2}$ is irreducible. Assume that $\ell \geq 3$. If $M \cong \widetilde{L}(\lambda)$ is a highest weight module in $K L_{-2}$ then the highest weight is $\lambda=-(2+j) \Lambda_{0}+j \Lambda_{1}$ where $0 \leq j \leq 2(\ell-3) j+1$. Since $H_{\theta}(L(\lambda))$ is a non-zero highest weight $V_{-\ell+7 / 2}(s l(2))$-module, then the complete reducibility result from [8] implies that $H_{\theta}(L(\lambda))$ is irreducible. The assertion now follows from Lemma 5.6. The proof in the case $\ell=2$ is similar, and it uses the classification of irreducible $V_{-2}\left(B_{2}\right)$-modules from Corollary 7.4 and the fact that every highest weight $V_{-3 / 2}(s l(2))=H_{\theta}\left(V_{-2}\left(B_{2}\right)\right)$-module in $K L_{-3 / 2}$ is irreducible.

8 On the representation theory of $V_{2-\ell}\left(D_{\ell}\right)$

8.1 The vertex algebra $\bar{V}_{2-\ell}\left(D_{\ell}\right)$

Let \mathfrak{g} be a simple Lie algebra of type D_{ℓ}. Recall that $2-\ell=-h^{\vee} / 2+1$ is a collapsing level [4]. We have the singular vector

$$
\begin{equation*}
v_{n}=\left(\sum_{i=2}^{\ell} e_{\epsilon_{1}-\epsilon_{i}}(-1) e_{\epsilon_{1}+\epsilon_{i}}(-1)\right)^{n} \mathbf{1} \tag{28}
\end{equation*}
$$

in $V^{n-\ell+1}\left(D_{\ell}\right)$, for any $n \in \mathbb{Z}_{>0}$. As in [40], we consider the vertex algebra

$$
\begin{equation*}
\bar{V}_{2-\ell}\left(D_{\ell}\right)=V^{2-\ell}\left(D_{\ell}\right) /\left\langle v_{1}\right\rangle \tag{29}
\end{equation*}
$$

where $\left\langle v_{1}\right\rangle$ denotes the ideal in $V^{2-\ell}\left(D_{\ell}\right)$ generated by the singular vector v_{1}. We recall the following result on the classification of irreducible $\bar{V}_{2-\ell}\left(D_{\ell}\right)$-modules in the category $K L^{2-\ell}$.

Proposition 8.1. [40]

(1) The set

$$
\left\{V\left(t \omega_{\ell}\right), V\left(t \omega_{\ell-1}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

provides a complete list of irreducible finite-dimensional modules for the Zhu algebra $A\left(\bar{V}_{2-\ell}\left(D_{\ell}\right)\right)$.
(2) The set

$$
\left\{L\left((2-t-\ell) \Lambda_{0}+t \Lambda_{\ell}\right), L\left((2-t-\ell) \Lambda_{0}+t \Lambda_{\ell-1}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

provides a complete list of irreducible $\bar{V}_{2-\ell}\left(D_{\ell}\right)$-modules from the category $K L^{2-\ell}$.

In the odd rank case $D_{2 \ell-1}$, the modules from Proposition 8.1 (2) provide a complete list of irreducible $V_{3-2 \ell}\left(D_{2 \ell-1}\right)$-modules from the category $K L_{3-2 \ell}$ (cf. [11]). The paper [11] also contains a fusion rules result in the category $K L_{3-2 \ell}$. Detailed fusion rules analysis will be presented elsewhere.

On the other hand, Theorem 4.2 implies that in the even rank case $D_{2 \ell}, V_{2-2 \ell}\left(D_{2 \ell}\right)$ is the unique irreducible $V_{2-2 \ell}\left(D_{2 \ell}\right)$-module from the category $K L_{2-2 \ell}$. In the next section we will give an explanation of this difference using singular vectors existing in the even rank case $D_{2 \ell}$.

8.2 Singular vectors in $V^{n-2 \ell+1}\left(D_{2 \ell}\right)$

In this section, we construct more singular vectors in $V^{n-2 \ell+1}\left(D_{2 \ell}\right)$. In the case $n=1$, we show that the maximal submodule of $V^{2-2 \ell}\left(D_{2 \ell}\right)$ is generated by three singular vectors. We present explicit formulas for these singular vectors.

Let \mathfrak{g} be a simple Lie algebra of type $D_{2 \ell}$. Denote by $S_{2 \ell}$ the group of permutations of 2ℓ elements. Let

$$
\Pi_{\ell}=\left\{p \in S_{2 \ell} \mid p^{2}=1, p(i) \neq i, \forall i \in\{1, \ldots, 2 \ell\}\right\}
$$

be the set of fixed-points free involutions, which is well known to have $(2 \ell-1)!!=1 \cdot 3 \cdot \ldots \cdot(2 \ell-1)$ elements. For $i \neq j$, denote by $(i j) \in S_{2 \ell}$ the transposition of i and j. Then, any $p \in \Pi_{\ell}$ admits a unique decomposition of the form:

$$
p=\left(i_{1} j_{1}\right) \cdots\left(i_{\ell} j_{\ell}\right)
$$

such that $i_{h}<j_{h}$ for $1 \leq h \leq \ell$, and $i_{1}<\ldots<i_{\ell}$. Define a permutation $\bar{p} \in S_{2 \ell}$ by:

$$
\bar{p}(2 h-1)=i_{h}, \bar{p}(2 h)=j_{h}, 1 \leq h \leq \ell
$$

Thus, we have a well defined map $p \mapsto \bar{p}$ from Π_{ℓ} to $S_{2 \ell}$. Define the function $s: \Pi_{\ell} \rightarrow\{ \pm 1\}$ as follows:

$$
s(p)=\operatorname{sign}(\bar{p})
$$

where $\operatorname{sign}(q)$ denotes the sign of the permutation $q \in S_{2 \ell}$.
We have:

Theorem 8.2. The vector

$$
\begin{equation*}
w_{n}=\left(\sum_{p \in \Pi_{\ell}} s(p) \prod_{\substack{i \in\{1, \ldots, 2 \ell\} \\ i<p(i)}} e_{\epsilon_{i}+\epsilon_{p(i)}}(-1)\right)^{n} \mathbf{1} \tag{30}
\end{equation*}
$$

is a singular vector in $V^{n-2 \ell+1}\left(D_{2 \ell}\right)$, for any $n \in \mathbb{Z}_{>0}$.

Proof. Direct verification of relations $e_{\epsilon_{k}-\epsilon_{k+1}}(0) w_{n}=0$, for $k=1, \ldots, 2 \ell-1, e_{\epsilon_{2 \ell-1}+\epsilon_{2 \ell}}(0) w_{n}=0$ and $e_{-\left(\epsilon_{1}+\epsilon_{2}\right)}(1) w_{n}=0$.

Remark 8.3. The vector w_{n} has conformal weight $n \ell$ and its \mathfrak{g}-highest weight equals $2 n \omega_{2 \ell}=n\left(\epsilon_{1}+\ldots+\epsilon_{2 \ell}\right)$. In particular, for $n=1$, the vector w_{1} has conformal weight ℓ and highest weight $2 \omega_{2 \ell}=\epsilon_{1}+\ldots+\epsilon_{2 \ell}$.

Example 8.4. Set $n=1$ for simplicity. For $\ell=2$ we recover the singular vector

$$
w_{1}=\left(e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{\epsilon_{3}+\epsilon_{4}}(-1)-e_{\epsilon_{1}+\epsilon_{3}}(-1) e_{\epsilon_{2}+\epsilon_{4}}(-1)+e_{\epsilon_{1}+\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1)\right) \mathbf{1}
$$

in $V^{-2}\left(D_{4}\right)$ of conformal weight 2 from [40]. For $\ell=3$, the formula for the singular vector in $V^{-4}\left(D_{6}\right)$ of conformal weight 3 is more complicated. It is a sum of $5!!=15$ monomials:

$$
\begin{aligned}
& w_{1}=\left(e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{\epsilon_{3}+\epsilon_{4}}(-1) e_{\epsilon_{5}+\epsilon_{6}}(-1)-e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{\epsilon_{3}+\epsilon_{5}}(-1) e_{\epsilon_{4}+\epsilon_{6}}(-1)\right. \\
& +e_{\epsilon_{1}+\epsilon_{2}}(-1) e_{\epsilon_{3}+\epsilon_{6}}(-1) e_{\epsilon_{4}+\epsilon_{5}}(-1)-e_{\epsilon_{1}+\epsilon_{3}}(-1) e_{\epsilon_{2}+\epsilon_{4}}(-1) e_{\epsilon_{5}+\epsilon_{6}}(-1) \\
& +e_{\epsilon_{1}+\epsilon_{3}}(-1) e_{\epsilon_{2}+\epsilon_{5}}(-1) e_{\epsilon_{4}+\epsilon_{6}}(-1)-e_{\epsilon_{1}+\epsilon_{3}}(-1) e_{\epsilon_{2}+\epsilon_{6}}(-1) e_{\epsilon_{4}+\epsilon_{5}}(-1) \\
& +e_{\epsilon_{1}+\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1) e_{\epsilon_{5}+\epsilon_{6}}(-1)-e_{\epsilon_{1}+\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{5}}(-1) e_{\epsilon_{3}+\epsilon_{6}}(-1) \\
& +e_{\epsilon_{1}+\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{6}}(-1) e_{\epsilon_{3}+\epsilon_{5}}(-1)-e_{\epsilon_{1}+\epsilon_{5}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1) e_{\epsilon_{4}+\epsilon_{6}}(-1) \\
& +e_{\epsilon_{1}+\epsilon_{5}}(-1) e_{\epsilon_{2}+\epsilon_{4}}(-1) e_{\epsilon_{3}+\epsilon_{6}}(-1)-e_{\epsilon_{1}+\epsilon_{5}}(-1) e_{\epsilon_{2}+\epsilon_{6}}(-1) e_{\epsilon_{3}+\epsilon_{4}}(-1) \\
& +e_{\epsilon_{1}+\epsilon_{6}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1) e_{\epsilon_{4}+\epsilon_{5}}(-1)-e_{\epsilon_{1}+\epsilon_{6}}(-1) e_{\epsilon_{2}+\epsilon_{4}}(-1) e_{\epsilon_{3}+\epsilon_{5}}(-1) \\
& \left.+e_{\epsilon_{1}+\epsilon_{6}}(-1) e_{\epsilon_{2}+\epsilon_{5}}(-1) e_{\epsilon_{3}+\epsilon_{4}}(-1)\right) \mathbf{1} .
\end{aligned}
$$

Denote by ϑ the automorphism of $V^{n-2 \ell+1}\left(D_{2 \ell}\right)$ induced by the automorphism of the Dynkin diagram of $D_{2 \ell}$ of order two such that

$$
\begin{align*}
& \vartheta\left(\epsilon_{k}-\epsilon_{k+1}\right)=\epsilon_{k}-\epsilon_{k+1}, k=1, \ldots, 2 \ell-2 \tag{31}\\
& \vartheta\left(\epsilon_{2 \ell-1}-\epsilon_{2 \ell}\right)=\epsilon_{2 \ell-1}+\epsilon_{2 \ell}, \vartheta\left(\epsilon_{2 \ell-1}+\epsilon_{2 \ell}\right)=\epsilon_{2 \ell-1}-\epsilon_{2 \ell} \tag{32}
\end{align*}
$$

Theorem 8.2 now implies that $\vartheta\left(w_{n}\right)$ is a singular vector in $V^{n-2 \ell+1}\left(D_{2 \ell}\right)$, for any $n \in \mathbb{Z}_{>0}$, also. The vector $\vartheta\left(w_{n}\right)$ has conformal weight $n \ell$ and its highest weight for \mathfrak{g} is $2 n \omega_{2 \ell-1}=n\left(\epsilon_{1}+\ldots+\epsilon_{2 \ell-1}-\epsilon_{2 \ell}\right)$.

We consider the associated quotient vertex algebra

$$
\begin{equation*}
\widetilde{V}_{n-2 \ell+1}\left(D_{2 \ell}\right):=V^{n-2 \ell+1}\left(D_{2 \ell}\right) /\left\langle v_{n}, w_{n}, \vartheta\left(w_{n}\right)\right\rangle \tag{33}
\end{equation*}
$$

where v_{n} is given by relation (28) (for $D_{2 \ell}$):

$$
v_{n}=\left(\sum_{i=2}^{2 \ell} e_{\epsilon_{1}-\epsilon_{i}}(-1) e_{\epsilon_{1}+\epsilon_{i}}(-1)\right)^{n} \mathbf{1}
$$

In particular, for $n=1$ we have the vertex algebra

$$
\widetilde{V}_{2-2 \ell}\left(D_{2 \ell}\right)=V^{2-2 \ell}\left(D_{2 \ell}\right) /\left\langle v_{1}, w_{1}, \vartheta\left(w_{1}\right)\right\rangle
$$

Clearly, $\widetilde{V}_{2-2 \ell}\left(D_{2 \ell}\right)$ is a quotient of vertex algebra $\bar{V}_{2-2 \ell}\left(D_{2 \ell}\right)$ from Subsection 8.1. The associated Zhu algebra is

$$
A\left(\tilde{V}_{2-2 \ell}\left(D_{2 \ell}\right)\right)=U(\mathfrak{g}) /\langle\bar{v}, \bar{w}, \vartheta(\bar{w})\rangle
$$

where

$$
\bar{v}=\sum_{i=2}^{2 \ell} e_{\epsilon_{1}-\epsilon_{i}} e_{\epsilon_{1}+\epsilon_{i}}, \quad \bar{w}=\sum_{p \in \Pi_{\ell}} s(p) \prod_{\substack{i \in\{1, \ldots, 2 \ell\} \\ i<p(i)}} e_{\epsilon_{i}+\epsilon_{p(i)}}
$$

Lemma 8.5. We have:
(1) $\bar{w} V\left(t \omega_{2 \ell}\right) \neq 0$, for $t \in \mathbb{Z}_{>0}$.
(2) $\vartheta(\bar{w}) V\left(t \omega_{2 \ell-1}\right) \neq 0$, for $t \in \mathbb{Z}_{>0}$.

Proof. (1) Let $t=1$. Denote by $v_{\omega_{2 \ell}}$ the highest weight vector of $V\left(\omega_{2 \ell}\right)$, and by $v_{-\omega_{2 \ell}}$ the lowest weight vector of $V\left(\omega_{2 \ell}\right)$. One can easily check, using the spinor realization of $V\left(\omega_{2 \ell}\right)$, that there exists a constant $C \neq 0$ such that

$$
\bar{w}\left(v_{-\omega_{2 \ell}}\right)=C v_{\omega_{2 \ell}} .
$$

For general $t \in \mathbb{Z}_{>0}$, the claim follows using the embedding of $V\left(t \omega_{2 \ell}\right)$ into $V\left(\omega_{2 \ell}\right)^{\otimes t}$. Claim (2) follows similarly.

Theorem 8.6. We have:
(i) The trivial module \mathbb{C} is the unique finite-dimensional irreducible module for $A\left(\tilde{V}_{2-2 \ell}\left(D_{2 \ell}\right)\right)$.
(ii) $V_{2-2 \ell}\left(D_{2 \ell}\right)$ is the unique irreducible \mathfrak{g}-locally finite module for $\widetilde{V}_{2-2 \ell}\left(D_{2 \ell}\right)$.
(iii) The vertex operator algebra $\tilde{V}_{2-2 \ell}\left(D_{2 \ell}\right)$ is simple, i.e.

$$
V_{2-2 \ell}\left(D_{2 \ell}\right)=V^{2-2 \ell}\left(D_{2 \ell}\right) /\left\langle v_{1}, w_{1}, \vartheta\left(w_{1}\right)\right\rangle
$$

Proof. (i) Proposition 8.1 implies that the set

$$
\left\{V\left(t \omega_{2 \ell}\right), V\left(t \omega_{2 \ell-1}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

provides a complete list of finite-dimensional irreducible modules for the algebra $U(\mathfrak{g}) /\langle\bar{v}\rangle=A\left(\bar{V}_{2-2 \ell}\left(D_{2 \ell}\right)\right)$. Lemma 8.5 shows that $V\left(t \omega_{2 \ell}\right)$ and $V\left(t \omega_{2 \ell-1}\right)$ are not modules for $A\left(\tilde{V}_{2-2 \ell}\left(D_{2 \ell}\right)\right)$, for $t \in \mathbb{Z}_{>0}$. Claim (i) follows. Claims (ii) and (iii) follow from (i) by applying Proposition 3.2 and Corollary 3.3.

Remark 8.7. A general character formula for certain simple affine vertex algebras at negative integer levels has been recently presented by V. G. Kac and M. Wakimoto in [38], (more precisely, $\mathfrak{g}=A_{n}, C_{n}$ for $k=-1$ and $\mathfrak{g}=D_{4}, E_{6}, E_{7}, E_{8}$ for $\left.k=-2,-3,-4,6\right)$. Note that conditions (i)-(iii) of [38, Theorem 3.1] hold for vertex algebras $V_{-b}\left(D_{n}\right), n>4, b=1, \ldots, n-2$, too. We conjecture that condition (iv) of this theorem holds as well; therefore formula (3.1) in [38] gives the character formula.

9 Conformal embedding of $\widetilde{V}\left(-4, D_{6} \times A_{1}\right)$ into $V_{-4}\left(E_{7}\right)$

In this section, we apply the results on representation theory of $V_{-4}\left(D_{6}\right)$ from previous sections to the conformal embedding of $\widetilde{V}\left(-4, D_{6} \times A_{1}\right)$ into $V_{-4}\left(E_{7}\right)$. This gives us an interesting example of a maximal semisimple equal rank subalgebra such that the associated conformally embedded subalgebra is not simple.

We use the construction of the root system of type E_{7} from [19], [29], and the notation for root vectors similar to the notation for root vectors for E_{6} from [9].

For a subset $S=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1,2,3,4,5,6\}, i_{1}<\ldots<i_{k}$, with odd number of elements (so that $k=1,3$ or 5), denote by $e_{\left(i_{1} \ldots i_{k}\right)}$ a suitably chosen root vector associated to the positive root

$$
\frac{1}{2}\left(\epsilon_{8}-\epsilon_{7}+\sum_{i=1}^{6}(-1)^{p(i)} \epsilon_{i}\right)
$$

such that $p(i)=0$ for $i \in S$ and $p(i)=1$ for $i \notin S$. We will use the symbol $f_{\left(i_{1} \ldots i_{k}\right)}$ for the root vector associated to corresponding negative root.

Note now that the subalgebra of E_{7} generated by positive root vectors

$$
\begin{equation*}
e_{\epsilon_{6}+\epsilon_{5}}, e_{\alpha_{1}}=e_{(1)}, e_{\alpha_{3}}=e_{\epsilon_{2}-\epsilon_{1}}, e_{\alpha_{4}}=e_{\epsilon_{3}-\epsilon_{2}}, e_{\alpha_{2}}=e_{\epsilon_{1}+\epsilon_{2}}, e_{\alpha_{5}}=e_{\epsilon_{4}-\epsilon_{3}} \tag{34}
\end{equation*}
$$

and the associated negative root vectors is a simple Lie algebra of type D_{6}. There are 30 root vectors associated to positive roots for D_{6} :

$$
\begin{align*}
& e_{\epsilon_{6}+\epsilon_{5}}, e_{\epsilon_{8}-\epsilon_{7}}, \\
& e_{(i)}, i \in\{1,2,3,4\}, \\
& e_{(i j k)}, i, j, k \in\{1,2,3,4\}, i<j<k \\
& e_{(i 56)}, i \in\{1,2,3,4\}, \\
& e_{(i j k 56)}, i, j, k \in\{1,2,3,4\}, i<j<k, \\
& e_{ \pm \epsilon_{i}+\epsilon_{j}}, i, j \in\{1,2,3,4\}, i<j \tag{35}
\end{align*}
$$

Furthermore, the subalgebra of E_{7} generated by $e_{\epsilon_{6}-\epsilon_{5}}$ and the associated negative root vector is a simple Lie algebra of type A_{1}. Thus, $D_{6} \oplus A_{1}$ is a semisimple subalgebra of E_{7}.

It follows from [3], [9] that the affine vertex algebra $\widetilde{V}\left(-4, D_{6} \times A_{1}\right)$ is conformally embedded in $V_{-4}\left(E_{7}\right)$. Remark that $\widetilde{V}\left(-4, A_{1}\right)=V_{-4}\left(A_{1}\right)$ (since $\left.V^{-4}\left(A_{1}\right)=V_{-4}\left(A_{1}\right)\right)$. This implies that $\widetilde{V}\left(-4, D_{6} \times A_{1}\right) \cong$ $\widetilde{V}\left(-4, D_{6}\right) \otimes V_{-4}\left(A_{1}\right)$.

It was shown in [15] that

$$
\begin{align*}
& v_{E_{7}}=\left(e_{\epsilon_{8}-\epsilon_{7}}(-1) e_{\epsilon_{6}+\epsilon_{5}}(-1)+e_{(156)}(-1) e_{(23456)}(-1)+\right. \\
& +e_{(256)}(-1) e_{(13456)}(-1)+e_{(356)}(-1) e_{(12456)}(-1)+ \\
& \left.+e_{(456)}(-1) e_{(12356)}(-1)\right) \mathbf{1} \tag{36}
\end{align*}
$$

is a singular vector in $V^{-4}\left(E_{7}\right)$. Moreover,

$$
V_{-4}\left(E_{7}\right) \cong V^{-4}\left(E_{7}\right) /\left\langle v_{E_{7}}\right\rangle
$$

Vectors $\left(e_{(12346)}(-1)\right)^{s} \mathbf{1}$, for $s \in \mathbb{Z}_{>0}$ are (non-trivial) singular vectors for the affinization of $D_{6} \oplus A_{1}$ in $V_{-4}\left(E_{7}\right)$ of highest weights $-(s+4) \Lambda_{0}+s \Lambda_{6}$ for $D_{6}^{(1)}$ and $-(s+4) \Lambda_{0}+s \Lambda_{1}$ for $A_{1}^{(1)}$. Thus there exist highest weight modules $\widetilde{L}_{D_{6}}\left(-(s+4) \Lambda_{0}+s \Lambda_{6}\right)$ and $\widetilde{L}_{A_{1}}\left(-(s+4) \Lambda_{0}+s \Lambda_{1}\right)$, for $D_{6}^{(1)}$ and $A_{1}^{(1)}$, respectively such that $\left(\widetilde{V}\left(-4, D_{6}\right) \otimes V_{-4}\left(A_{1}\right)\right) \cdot\left(e_{(12346)}(-1)\right)^{s} \mathbf{1}$ is isomorphic to $\widetilde{L}_{D_{6}}\left(-(s+4) \Lambda_{0}+s \Lambda_{6}\right) \otimes \widetilde{L}_{A_{1}}\left(-(s+4) \Lambda_{0}+\right.$ $s \Lambda_{1}$). This implies that

$$
L_{D_{6}}\left(-(s+4) \Lambda_{0}+s \Lambda_{6}\right) \otimes L_{A_{1}}\left(-(s+4) \Lambda_{0}+s \Lambda_{1}\right)
$$

are irreducible $\widetilde{V}\left(-4, D_{6} \times A_{1}\right)$-modules, for $s \in \mathbb{Z}_{>0}$.
In particular, $L_{D_{6}}\left(-(s+4) \Lambda_{0}+s \Lambda_{6}\right)$ are irreducible (D_{6}-locally finite) $\tilde{V}\left(-4, D_{6}\right)$-modules, for $s \in \mathbb{Z}_{>0}$. In the next proposition, we use the notation from (29), (30), (31), (32).

Proposition 9.1. We have:
(1) Assume that $\widetilde{L}_{D_{6}}\left(-6 \Lambda_{0}+2 \Lambda_{6}\right)$ and $\widetilde{L}_{D_{6}}\left(-6 \Lambda_{0}+2 \Lambda_{5}\right)$ are highest weight $\bar{V}_{-4}\left(D_{6}\right)$-modules from the category $K L^{-4}$, not necessarily irreducible. Then

$$
\widetilde{L}_{D_{6}}\left(-6 \Lambda_{0}+2 \Lambda_{6}\right) \boxtimes \widetilde{L}_{D_{6}}\left(-6 \Lambda_{0}+2 \Lambda_{5}\right)=0,
$$

where \boxtimes is the tensor functor for $K L^{-4}$-modules. In other words, we cannot have a non-zero $\bar{V}_{-4}\left(D_{6}\right)$-module M from $K L^{-4}$ and a non-zero intertwining operator of type

$$
\begin{equation*}
\left(\widetilde{L}_{D_{6}}\left(-6 \Lambda_{0}+2 \Lambda_{6}\right) \quad{ }^{M} \widetilde{L}_{D_{6}}\left(-6 \Lambda_{0}+2 \Lambda_{5}\right)\right) . \tag{37}
\end{equation*}
$$

(2) Relations $w_{1} \neq 0$ and $\vartheta\left(w_{1}\right)=0$ hold in $V_{-4}\left(E_{7}\right)$. In particular, $\widetilde{V}\left(-4, D_{6}\right)$ is not simple.

Proof. For the proof of assertion (1) we first notice that the following decomposition of $D_{6}-$ modules holds:

$$
\begin{align*}
V_{D_{6}}\left(2 \omega_{6}\right) \otimes V_{D_{6}}\left(2 \omega_{5}\right)= & V_{D_{6}}\left(2 \omega_{5}+2 \omega_{6}\right) \oplus V_{D_{6}}\left(\omega_{3}+\omega_{5}+\omega_{6}\right) \oplus V_{D_{6}}\left(2 \omega_{3}\right) \\
& \oplus V_{D_{6}}\left(\omega_{1}+\omega_{5}+\omega_{6}\right) \oplus V_{D_{6}}\left(\omega_{1}+\omega_{3}\right) \oplus V_{D_{6}}\left(2 \omega_{1}\right) . \tag{38}
\end{align*}
$$

Assume that M is a non-zero $\bar{V}_{-4}\left(D_{6}\right)$-module in the category $K L^{-4}$ such that there is a non-trivial intertwining operator of type (37). Then the Frenkel-Zhu formula for fusion rules implies that M must contain a non-trivial subquotient whose lowest graded component appears in the decomposition of $V_{D_{6}}\left(2 \omega_{6}\right) \otimes V_{D_{6}}\left(2 \omega_{5}\right)$. But by Proposition 8.1, the D_{6}-modules appearing in (38) cannot be lowest components of any $\bar{V}_{-4}\left(D_{6}\right)$-module. This proves assertion (1).

Assertion (1) implies that if $w_{1} \neq 0$ and $\vartheta\left(w_{1}\right) \neq 0$ in $V_{-4}\left(E_{7}\right)$, then

$$
Y\left(w_{1}, z\right) \vartheta\left(w_{1}\right)=0 .
$$

A contradiction since $V_{-4}\left(E_{7}\right)$ is a simple vertex algebra. The same fusion rules argument shows that if $\vartheta\left(w_{1}\right) \neq 0$ in $V_{-4}\left(E_{7}\right)$, then

$$
Y\left(\vartheta\left(w_{1}\right), z\right) e_{(12346)}(-1)^{2} \mathbf{1}=0,
$$

which again contradicts the simplicity of $V_{-4}\left(E_{7}\right)$. So, $\vartheta\left(w_{1}\right)=0$.

But if $w_{1}=0$, then, by Theorem 8.6 (iii), we have that $\widetilde{V}\left(-4, D_{6}\right)=V_{-4}\left(D_{6}\right)$. Theorem 4.2 implies that $\widetilde{V}\left(-4, D_{6}\right)$ is not simple, since the simple vertex operator algebra $V_{-4}\left(D_{6}\right)$ has only one irreducible $D_{6}-$ locally finite module. A contradiction. So $w_{1} \neq 0$ and claim (2) follows.

Set

$$
\begin{equation*}
\mathcal{V}_{-4}\left(D_{6}\right)=\frac{V^{-4}\left(D_{6}\right)}{<v_{1}, \vartheta\left(w_{1}\right)>} \tag{39}
\end{equation*}
$$

Theorem 9.2. We have:
(1) $\widetilde{V}\left(-4, D_{6}\right) \cong \mathcal{V}_{-4}\left(D_{6}\right)$.
(2) The set $\left\{L_{D_{6}}\left(-(s+4) \Lambda_{0}+s \Lambda_{6}\right) \mid s \in \mathbb{Z}_{\geq 0}\right\}$ provides a complete list of irreducible $\mathcal{V}_{-4}\left(D_{6}\right)$-modules.

Proof. We first notice that $\tilde{V}\left(-4, D_{6}\right)$ is a certain quotient of $\frac{V^{-4}\left(D_{6}\right)}{\left\langle v_{1}, \vartheta\left(w_{1}\right)\right\rangle}$, and that

$$
H_{\theta}\left(\frac{V^{-4}\left(D_{6}\right)}{\left\langle v_{1}, \vartheta\left(w_{1}\right)>\right.}\right)=\mathcal{V}_{-2}\left(D_{4}\right)
$$

Since $\mathcal{V}_{-2}\left(D_{4}\right)$ contains a unique non-trivial ideal which is maximal and simple, we conclude that $\frac{V^{-4}\left(D_{6}\right)}{\left\langle v_{1}, \vartheta\left(w_{1}\right)\right\rangle}$ also contains a unique ideal, and it must be the ideal generated by w_{1}. Since in $\widetilde{V}\left(-4, D_{6}\right)$ we have that $w_{1} \neq 0$, we conclude that

$$
\widetilde{V}\left(-4, D_{6}\right) \cong \frac{V^{-4}\left(D_{6}\right)}{<v_{1}, \vartheta\left(w_{1}\right)>}
$$

The proof of assertion (2) follows from (1), the classification result of $\bar{V}_{-4}\left(D_{6}\right)$-modules from Proposition 8.1 and Lemma 8.5.

10 Funding

This work was supported by the Croatian Science Foundation [grant number 2634 to D.A. and O.P.]; and the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme [KK.01.1.1.01 to D.A. and O.P.].

Acknowledgement

We would like to thank Maria Gorelik, Tomoyuki Arakawa and Anne Moreau for correspondence and discussions.

References

[1] Adamović, D. "Some rational vertex algebras." Glas. Mat. Ser. III 29 (1994): 25-40.
[2] Adamović, D. "A construction of some ideals in affine vertex algebras." Int. J. Math. Math. Sci. (2003): 971-980.
[3] Adamović D., Kac V. G., Möseneder Frajria P., Papi P., and Perše O. "Finite vs infinite decompositions in conformal embeddings." Comm. Math. Phys. 348 (2016): 445-473.
[4] Adamović D., Kac V. G., Möseneder Frajria P., Papi P., and Perše O. "Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results." J. Algebra 500 (2018): 117-152.
[5] Adamović D., Kac V. G., Möseneder Frajria P., Papi P., and Perše O. "Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions." Jpn. J. Math. 12 (2017): 261-315.
[6] Adamović D., Kac V. G., Möseneder Frajria P., Papi P., and Perše O. "On classification of non-equal rank affine conformal embeddings and applications." Selecta Math. (N.S.) 24 (2018): 2455-2498.
[7] Adamović D., Kac V. G., Möseneder Frajria P., Papi P., and Perše O., to appear
[8] Adamović D., and Milas A. "Vertex operator algebras associated to modular invariant representations for $A_{1}^{(1)} . " M a t h$. Res. Lett. 2 (1995): 563-575.
[9] Adamović D., and Perše O. "Some general results on conformal embeddings of affine vertex operator algebras." Algebr. Represent. Theory 16 (2013): 51-64.
[10] Adamović D., and Perše O. "Representations of certain non-rational vertex operator algebras of affine type." J. Algebra 319 (2008): 2434-2450.
[11] Adamović D., and Perše O. "Fusion rules and complete reducibility of certain modules for affine Lie algebras." J. Algebra Appl. 13 (2014): 1350062, 18 pp.
[12] Arakawa T. "Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture." Duke Math. J. 130 (2005): 435-478.
[13] Arakawa T. "Associated varieties of modules over Kac-Moody algebras and C_{2}-cofiniteness of W-algebras." Int. Math. Res. Not. IMRN (2015): 11605-11666.
[14] Arakawa T., and Kawasetsu K. "Quasi-lisse vertex algebras and modular linear differential equations." to appear in Kostant Memorial Volume, Birkhauser, arXiv:1610.05865.
[15] Arakawa T., and Moreau A. "Joseph ideals and lisse minimal W-algebras." J. Inst. Math. Jussieu 17 (2018): 397-417.
[16] Arakawa T., and Moreau A. "Sheets and associated varieties of affine vertex algebras." Adv. Math. 320 (2017): 157-209.
[17] Arakawa T., and Moreau A. "On the irreducibility of associated varieties of W-algebras." J. Algebra 500 (2018): 542-568.
[18] Borcherds R. E. "Vertex algebras, Kac-Moody algebras, and the Monster." Proc. Nat. Acad. Sci. U.S.A. 83 (1986): 3068-3071.
[19] Bourbaki. Groupes et algèbras de Lie, Paris: Hermann, 1975.
[20] Deodhar V. V., Gabber O., and Kac V. G. "Structures of some categories of representations of infinitedimensional Lie algebras." Adv. Math. 45 (1982): 92-116.
[21] Feigin B., and Frenkel E. "Quantization of the Drinfel'd-Sokolov reduction." Phys. Lett. B 246 (1990): 75-81.
[22] Feingold A. J., and Frenkel I. B. "Classical affine algebras." Adv. Math. 56 (1985): 117-172.
[23] Frenkel E., Kac V. G., and Wakimoto M. "Characters and fusion rules for W-algebras via quantized Drinfel'd-Sokolov reduction." Comm. Math. Phys. 147 (1992): 295-328.
[24] Frenkel I., Huang Y. Z., and Lepowsky J. "On axiomatic approaches to vertex operator algebras and modules." Mem. Amer. Math. Soc. 104 (1993): viii+64 pp.
[25] Frenkel I., Lepowsky J., and Meurman A. Vertex Operator Algebras and the Monster, Pure and Appl. Math. 134, Boston: Academic Press, 1988.
[26] Frenkel I., and Zhu Y.-C. "Vertex operator algebras associated to representations of affine and Virasoro algebras" Duke Math. J. 66 (1992): 123-168.
[27] Gaiotto D. "Twisted compactifications of $3 \mathrm{~d} N=4$ theories and conformal blocks." arXiv:1611.01528.
[28] Gorelik M., and Kac V. G. "On complete reducibility for infinite-dimensional Lie algebras." Adv. Math. 226 (2011): 1911-1972.
[29] Humphreys J. E. Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, New York-Berlin: Springer-Verlag, 1972.
[30] Kac V. G. "Representations of classical Lie superalgebras." in Differential geometrical methods in Mathematical Physics, II (Proc. Conf. Univ. Bonn, Bonn 1977), Springer, Berlin, 1978, 597-626.
[31] Kac V. G. Infinite dimensional Lie algebras, 3rd ed. Cambridge: Cambridge Univ. Press, 1990.
[32] Kac V. G. Vertex Algebras for Beginners, University Lecture Series, 2nd ed. AMS, 1998.
[33] Kazhdan D., and Lusztig G. "Tensor structures arising from affine Lie algebras, I, II." J. Amer. Math. Soc. 6 (1993): 905-947, 949-1011.
[34] Kac V. G., and Peterson D. H. "Infinite-dimensional Lie algebras, theta functions and modular forms." Adv. in Math. 53 (1984): 125-264.
[35] Kac V. G., Roan S.-S., and Wakimoto M. "Quantum reduction for affine superalgebras." Comm. Math. Phys. 241 (2003): 307-342.
[36] Kac V. G., and Wakimoto M. "Quantum reduction and representation theory of superconformal algebras." Adv. Math. 185 (2004): 400-458.
[37] Kac V. G., and Wakimoto M. "On Rationality of W-algebras." Transform. Groups 13 (2008): 671-713.
[38] Kac V. G., and Wakimoto M. "On characters of irreducible highest weight modules of negative integer level over affine Lie algebras." arXiv:1706.08387.
[39] Kawasetsu K. "W-algebras with non-admissible levels and the Deligne exceptional series." Int. Math. Res. Not. IMRN (2018): 641-676.
[40] Perše O. "A note on representations of some affine vertex algebras of type D." Glas. Mat. Ser. III 48 (68) (2013): 81-90.
[41] Zhu Y.-C. "Modular invariance of characters of vertex operator algebras." J. Amer. Math. Soc. 9 (1996): 237-302.

