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We discover a large class of simple affine vertex algebras Vk(g), associated to basic Lie superalgebras g at

non–admissible collapsing levels k, having exactly one irreducible g–locally finite module in the category O. In the case

when g is a Lie algebra, we prove a complete reducibility result for Vk(g)–modules at an arbitrary collapsing level. We

also determine the generators of the maximal ideal in the universal affine vertex algebra V k(g) at certain negative

integer levels. Considering some conformal embeddings in the simple affine vertex algebras V−1/2(Cn) and V−4(E7), we

surprisingly obtain the realization of non-simple affine vertex algebras of types B and D having exactly one non-trivial

ideal.

1 Introduction

Affine vertex algebras are one of the most interesting and important classes of vertex algebras. Categories of

modules for simple affine vertex algebra Vk(g), associated to a simple Lie algebra g, have mostly been studied

in the case of positive integer levels k ∈ Z≥0. These categories enjoy many nice properties such as: finitely many

irreducibles, semisimplicity, modular invariance of characters (cf. [26], [31], [34], [41]).

In recent years, affine vertex algebras have attracted a lot of attention because of their connection with

affine W–algebras Wk(g, f), obtained by quantum Hamiltonian reduction (cf. [21], [23], [35], [36]). Since the

quantum Hamiltonian reduction functor Hf ( · ) maps any integrable ĝ–module to zero (cf. [12], [35]), in order

to obtain interesting W–algebras, one has to consider affine vertex algebras Vk(g), for k /∈ Z≥0.
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It turns out that for certain non-admissible levels k (such as negative integer levels), the associated vertex

algebras Vk(g) have finitely many irreducibles in category O (cf. [15], [17], [40]), and their characters satisfy

certain modular-like properties (cf. [14]). These affine vertex algebras then give C2–cofiniteW–algebras Wk(g, f),

for properly chosen nilpotent element f (cf. [37], [39]).

In this paper, we classify irreducible modules in the category KLk (i.e. the category of g–locally finite

Vk(g)–modules in Ok (see Subsection 2.3) for a large family of collapsing levels k. Recall from [4] that a level k is

called collapsing if the simpleW–algebra Wk(g, θ), associated to a minimal nilpotent element e−θ, is isomorphic

to its affine vertex subalgebra Vk(g\) (see Definition 2.2 and (7)). In the present paper we keep the notation of

[4]. In particular, the highest root is normalized by the condition (θ, θ) = 2. We discover a large family of vertex

algebras having one irreducible module in the category KLk, which in a way extends the results on Deligne

series from [15]. Part (1) is proven there in the Lie algebra case.

Theorem 1.1. Assume that the level k and the basic simple Lie superalgebra g satisfy one of the following

conditions:

(1) k = −h
∨

6 − 1 and g is one of the Lie algebras of exceptional Deligne’s series A2, G2, D4, F4, E6, E7, E8,

or g = psl(m|m) (m ≥ 2), osp(n+ 8|n) (n ≥ 2), spo(2|1), F (4), G(3) (for both choices of θ);

(2) k = −h∨/2 + 1 and g = osp(n+ 4m+ 8|n), n ≥ 2,m ≥ 0.

(3) k = −h∨/2 + 1 and g = D2m, m ≥ 2.

(4) k = −10 and g = E8.

Then Vk(g) is the unique irreducible Vk(g)–module in the category KLk.

We also prove a complete reducibility result in KLk (cf. Theorem 5.9, Theorem 5.7):

Theorem 1.2. Assume that g is a Lie algebra and k ∈ C \ Z≥0. Then KLk is a semi-simple category in the

following cases:

• k is a collapsing level.

• Wk(g, θ) is a rational vertex operator algebra.

It is interesting that in some cases we have that KLk is a semi-simple category, but there can exist

indecomposable but not irreducible Vk(g)–modules in the category O. In order to prove Theorem 1.2 we modified

methods from [28] and [20] in a vertex algebraic setting. In particular we prove that the contravariant functor

M 7→Mσ from [20] acts on the category KLk (cf. Lemma 3.6). Then for the proof of complete reducibility in

KLk it is enough to check that every highest weight Vk(g)–module in KLk is irreducible (cf. Theorem 5.5).

Representation theory of a simple affine vertex algebra Vk(g) is naturally connected with the structure of

the maximal ideal in the universal affine vertex algebra V k(g). In the second part of paper we present explicit

formulas for singular vectors which generate the maximal ideal in V 2−2`(D2`) (which is case (3) of Theorem 1.1)
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and V −2(D`). In the second case, we show that the Hamiltonian reduction functor Hθ( · ) gives an equivalence

of the category of g–locally finite V−2(D`)–modules KL−2 and the category of modules for a rational vertex

algebra V`−4(A1). Singular vectors in V k(g) for certain negative integer levels k have also been constructed

in [2].

We also apply our results to study the structure of conformally embedded subalgebras of some simple affine

vertex algebras.

As in [6], for a subalgebra k of a simple Lie algebra g, we denote by Ṽ (k, k) the vertex subalgebra of Vk(g)

generated by x(−1)1, x ∈ k. If k is a reductive quadratic subalgebra of g, then we say that Ṽ (k, k) is conformally

embedded in Vk(g) if the Sugawara-Virasoro vectors of both algebras coincide. We also say that k is conformally

embedded in g at level k if Ṽ (k, k) is conformally embedded in Vk(g).

We are able to prove that in the cases listed in Theorem 1.3 below, Ṽ (k, k) is not simple. On the other

hand, we show that V−1/2(C5) contains a simple subalgebra V−2(B2)⊗ V−5/2(A1) (see Corollary 7.4). For the

conformal embedding of D6 ×A1 into E7 at level k = −4, we show that Ṽ (−4, D6 ×A1) = V−4(D6)⊗ V−4(A1)

where V−4(D6) is a quotient of the universal affine vertex algebra V −4(D6) by two singular vectors of conformal

weights two and three (cf. (39)). Moreover, V−4(D6) has infinitely many irreducible modules in the category

of g–locally finite modules, which we explicitly describe. All of them appear in V−4(E7) as submodules or

subquotients.

Theorem 1.3. Let Vk(D`), Vk(B`), be the vertex algebras defined in (25), (26), (39). Consider the following

conformal embeddings:

(1) D` ×A1 into C2l for ` ≥ 4 at level k = − 1
2 .

(2) B` ×A1 into C2l+1 for ` ≥ 3 at level k = − 1
2 .

(3) D6 ×A1 into E7 at level k = −4.

Then,

• Ṽ (− 1
2 , D` ×A1) = V−2(D`)⊗ V−`(A1) in case (1),

• Ṽ (− 1
2 , B` ×A1) = V−2(B`)⊗ V−`−1/2(A1) in case (2),

• Ṽ (−4, D6 ×A1) = V−4(D6)⊗ V−4(A1) in case (3).

Moreover, the algebras Vk(D`), Vk(B`), are non-simple, with a unique non-trivial ideal.

The decompositions of the embeddings above is still an open problem, and will be a subject of our

forthcoming papers.

2 Preliminaries

We assume that the reader is familiar with the notion of vertex (super)algebra (cf. [18], [25], [32]) and of simple

basic Lie superalgebras (see [30]) and their affinizations (see [31] for the Lie algebra case).
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Let V be a conformal vertex algebra. Denote by A(V ) the associative algebra introduced in [41], called the

Zhu algebra of V .

2.1 Basic Lie superalgebras and minimal gradings

For the reader’s convenience we recall here the setting and notation of [4] regarding basic Lie superalgebras

and their minimal gradings. Let g = g0̄ ⊕ g1̄ be a simple finite dimensional basic Lie superalgebra. We choose a

Cartan subalgebra h for g0̄ and let ∆ be the set of roots. Assume g is not osp(3|n). A root −θ is called minimal

if it is even and there exists an additive function ϕ : ∆→ R such that ϕ|∆ 6= 0 and ϕ(θ) > ϕ(η), ∀ η ∈ ∆ \ {θ}.

Fix a minimal root −θ of g. We may choose root vectors eθ and e−θ such that

[eθ, e−θ] = x ∈ h, [x, e±θ] = ±e±θ.

Due to the minimality of −θ, the eigenspace decomposition of ad x defines a minimal 1
2Z-grading ([36, (5.1)]):

g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1, (1)

where g±1 = Ce±θ. We thus have a bijective correspondence between minimal gradings (up to an automorphism

of g) and minimal roots (up to the action of the Weyl group). Furthermore, one has

g0 = g\ ⊕Cx, g\ = {a ∈ g0 | (a|x) = 0}. (2)

Note that g\ is the centralizer of the triple {fθ, x, eθ}. We can choose h\ = {h ∈ h | (h|x) = 0}, as a Cartan

subalgebra of the Lie superalgebra g\, so that h = h\ ⊕Cx.

For a given choice of a minimal root −θ, we normalize the invariant bilinear form (·|·) on g by the condition

(θ|θ) = 2. (3)

The dual Coxeter number h∨ of the pair (g, θ) (equivalently, of the minimal gradation (1)) is defined to be half

the eigenvalue of the Casimir operator of g corresponding to (·|·), normalized by (3). Since θ is the highest root,

we have that 2h∨ = (θ|θ + 2ρ) hence

(ρ|θ) = h∨ − 1. (4)

The complete list of the Lie superalgebras g\, the g\–modules g±1/2 (they are isomorphic and self-dual),

and h∨ for all possible choices of g and of θ (up to isomorphism) is given in Tables 1,2,3 of [36]. We reproduce

them below. Note that in these tables g = osp(m|n) (resp. g = spo(n|m)) means that θ is the highest root of

the simple component so(m) (resp. sp(n)) of g0̄. Also, for g = sl(m|n) or psl(m|m) we always take θ to be the

highest root of the simple component sl(m) of g0̄ (for m = 4 we take one of the simple roots). Note that the
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exceptional Lie superalgebras g = F (4) and g = G(3) appear in both Tables 2 and 3, which corresponds to the

two inequivalent choices of θ, the first one being a root of the simple component sl(2) of g0̄.

Table 1

g is a simple Lie algebra.

g g\ g1/2 h∨ g g\ g1/2 h∨

sl(n), n ≥ 3 gl(n− 2) Cn−2 ⊕ (Cn−2)∗ n F4 sp(6)
∧3

0 C6 9

so(n), n ≥ 5 sl(2)⊕ so(n− 4) C2 ⊗ Cn−4 n− 2 E6 sl(6)
∧3 C6 12

sp(n), n ≥ 2 sp(n− 2) Cn−2 n/2 + 1 E7 so(12) spin12 18

G2 sl(2) S3C2 4 E8 E7 dim = 56 30

Table 2

g is not a Lie algebra but g\ is and g±1/2 is purely odd (m ≥ 1).

g g\ g1/2 h∨ g g\ g1/2 h∨

sl(2|m), gl(m) Cm ⊕ (Cm)∗ 2−m D(2, 1; a) sl(2)⊕ sl(2) C2 ⊗ C2 0

m 6= 2

psl(2|2) sl(2) C2 ⊕ C2 0 F (4) so(7) spin7 −2

spo(2|m) so(m) Cm 2−m/2 G(3) G2 Dim = 0|7 −3/2

osp(4|m) sl(2)⊕ sp(m) C2 ⊗ Cm 2−m

Table 3

Both g and g\ are not Lie algebras (m,n ≥ 1).

g g\ g1/2 h∨

sl(m|n), m 6= n,m > 2 gl(m− 2|n) Cm−2|n ⊕ (Cm−2|n)∗ m− n

psl(m|m), m > 2 sl(m− 2|m) Cm−2|m ⊕ (Cm−2|m)∗ 0

spo(n|m), n ≥ 4 spo(n− 2|m) Cn−2|m 1/2(n−m) + 1

osp(m|n), m ≥ 5 osp(m− 4|n)⊕ sl(2) Cm−4|n ⊗ C2 m− n− 2

F (4) D(2, 1; 2) Dim = 6|4 3

G(3) osp(3|2) Dim = 4|4 2

In this paper we shall exclude the case of g = sl(n+ 2|n), n > 0. In all other cases the Lie superalgebra g\

decomposes in a direct sum of all its minimal ideals, called components of g\:

g\ =
⊕
i∈I

g\i ,

where each summand is either the (at most 1-dimensional) center of g\ or is a basic simple Lie superalgebra

different from psl(n|n). Let Cg\i
be the Casimir operator of g\i corresponding to (·|·)|g\i×g\i . We define the dual

Coxeter number h∨0,i of g\i as half of the eigenvalue of Cg\i
acting on g\i (which is 0 if g\i is abelian).

Denote by Vg(µ) (or V (µ)) the irreducible finite-dimensional highest weight g–module with highest weight

µ. Denote by P+ the set of highest weights of irreducible finite-dimensional representations of g.

Since h = h\ ⊕Cx, we have, in particular, that µ ∈ h∗ can be uniquely written as

µ = µ|h\ + `θ, (5)

with ` ∈ C. If µ ∈ P+, then, since θ(h\) = 0, µ(θ∨) = 2` ∈ Z, so ` ∈ 1
2Z≥0.
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2.2 Affine Lie algebras, vertex algebras, W-algebras

Let ĝ be the affinization of g:

ĝ = C[t, t−1]⊗ g⊕CK ⊕Cd

with the usual commutation relations. We let δ be the fundamental imaginary root. Let α0 = δ − θ the affine

simple root. Since θ is even, hence non-isotropic, so that α∨0 = K − θ∨ makes sense.

Denote by L(λ) (or Lg(λ)) the irreducible highest weight ĝ–module with highest weight λ.

Denote by V k(g) the universal affine vertex algebra associated to ĝ of level k ∈ C. We shall assume that

k 6= −h∨. Then (see e.g. [32]) V k(g) is a conformal vertex algebra with Segal-Sugawara conformal vector ωg. Let

Y (ωg, z) =
∑
Lg(n)z−n−2 be the corresponding Virasoro field. Denote by Vk(g) the (unique) simple quotient of

V k(g). Clearly, Vk(g) ∼= Lg(kΛ0) as ĝ–modules.

Denote by W k(g, θ) the affine W–algebra obtained from V k(g) by Hamiltonian reduction relative to a

minimal nilpotent element e−θ. Denote by Wk(g, θ) the simple quotient of W k(g, θ). Recall that the vertex

algebra W k(g, θ) is strongly and freely generated by elements J{a}, where a runs over a basis of g\, G{v}, where

v runs over a basis of g−1/2, and the Virasoro vector ω. The elements J{a}, G{v} are primary of conformal

weight 1 and 3/2, respectively, with respect to ω.

Let Vk(g\) be the subalgebra of the vertex algebra W k(g, θ), generated by {J{a} | a ∈ g\}. The vertex

algebra Vk(g\) is isomorphic to a universal affine vertex algebra. More precisely, letting

ki = k + 1
2 (h∨ − h∨0,i), i ∈ I, (6)

the map a 7→ J{a} extends to an isomorphism Vk(g\) '
⊗

i∈I V
ki(g\i).

We also set Vk(g\) to be the image of Vk(g\) in Wk(g, θ). Clearly we can write

Vk(g\) '
⊗
i∈I

Vki(g
\
i), (7)

where Vki(g
\
i) is some quotient (not necessarily simple) of V ki(g\i).

2.3 Category O and Hamiltonian reduction functor

Recall that ĝ-module M is in category Ok if it is ĥ-diagonalizable with finite dimensional weight spaces, K acts

as kIdM and M has a finite number of maximal weights.

There is a remarkable functor Hθ from Ok to the category of W k(g, θ)-modules whose properties will be

very important in the following. We recall them in a form suitable for our purposes (see [12] for details; there

Hθ is denoted by H0).

Theorem 2.1.
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1. Hθ is exact.

2. If L(λ) is a irreducible highest weight ĝ-module, then λ(α∨0 ) ∈ Z≥0 implies Hθ(L(λ)) = {0}. Otherwise

Hθ(L(λ)) is isomorphic to the irreducible W k(g, θ)-module with highest weight φλ defined by formula (67)

in [12].

2.4 Collapsing levels

Definition 2.2. Assume k 6= −h∨. If Wk(g, θ) = Vk(g\), we say that k is a collapsing level.

Theorem 2.3. [4, Theorem 3.3] Let p(k) be the polynomial listed in Table 4 below. Then k is a collapsing level

if and only if k 6= −h∨ and p(k) = 0. In such cases,

Wk(g, θ) =
⊗
i∈I∗

Vki(g
\
i), (8)

where I∗ = {i ∈ I | ki 6= 0}. If I∗ = ∅, then Wk(g, θ) = C.

Table 4

g p(k) g p(k)

sl(m|n), n 6= m (k + 1)(k + (m− n)/2) E6 (k + 3)(k + 4)

psl(m|m) k(k + 1) E7 (k + 4)(k + 6)

osp(m|n) (k + 2)(k + (m− n− 4)/2) E8 (k + 6)(k + 10)

spo(n|m) (k + 1/2)(k + (n−m + 4)/4) F4 (k + 5/2)(k + 3)

D(2, 1; a) (k − a)(k + 1 + a) G2 (k + 4/3)(k + 5/3)

F (4), g\ = so(7) (k + 2/3)(k − 2/3) G(3), g\ = G2 (k − 1/2)(k + 3/4)

F (4), g\ = D(2, 1; 2) (k + 3/2)(k + 1) G(3), g\ = osp(3|2) (k + 2/3)(k + 4/3)

2.5 Weyl vertex algebra

LetM` denote the Weyl vertex algebra (also called symplectic bosons) generated by even elements a±i , i = 1, . . . , `

satisfying the following λ–brackets

[(a±i )λ(a±j )] = 0, [(a+
i )λ(a−j )] = δi,j .

Recall also that the symplectic affine vertex algebra V−1/2(C`) is realized as a Z2–orbifold of M` (see [22]).

3 The category KLk

Let k be a noncritical level. Note that the Casimir element of ĝ can be expressed as Ω = d+ Lg(0); it commutes

with ĝ–action.

Consider the category Ck of modules for the universal affine vertex algebra V k(g), i.e. the category of

restricted ĝ–modules of level k. Regard M ∈ Ck as a ĝ–module by letting d act as −Lg(0). Let KLk be the
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category of modules M ∈ Ck such that, as ĝ-modules, are in Ok and which admit the following weight space

decomposition with respect to Lg(0):

M =
⊕
α∈C

M(α), Lg(0)|M(α) ≡ α Id, dimM(α) <∞.

Our definition is related but different from the one introduced in [13]. Let KLk be the category of all modules

in KLk which are Vk(g)–modules.

Remark 3.1. If Vk(g) has finitely many irreducible modules in the category KLk, one can show that every

Vk(g)–module M in KLk is of finite length. This happens when k is admissible (cf. [12]) and when Vk(g) is

quasi-lisse (cf. [14]). But when Vk(g) has infinitely many irreducible modules in KLk (as in the cases considered

in [33], [11]), then one can have modules in KLk of infinite length.

Recall that there is a one-to-one correspondence between irreducible Z≥0–graded modules for a conformal

vertex algebra V (with a conformal vector ω, such that Y (ω, z) =
∑

i∈Z L(i)z−i−2) and irreducible modules for

the corresponding Zhu algebra A(V ) [41]. This implies, in particular, that there is a one-to-one correspondence

between irreducible finite-dimensional A(V )–modules and irreducible Z≥0–graded V –modules whose graded

components, which are eigenspaces for L(0), are finite-dimensional. In the case of affine vertex algebras, we have

the following simple interpretation.

Proposition 3.2. Let Ṽk(g) be a quotient of V k(g) (not necessary simple). Consider Ṽk(g) as a conformal

vertex algebra with conformal vector ωg. Then there is a one-to-one correspondence between irreducible Ṽk(g)

in the category KLk and irreducible finite-dimensional A(Ṽk(g))–modules.

Corollary 3.3. Assume that g is a simple basic Lie superalgebra and Ṽk(g) is a quotient of V k(g) such that

the trivial module C is the unique finite-dimensional irreducible A(Ṽk(g))–module. Then Ṽk(g) = Vk(g).

Proof . Assume that Ṽk(g) is not simple. Then it contains a non-zero graded ideal I 6= Ṽk(g) with respect to

Lg(0):

I =
⊕
n∈Z≥0

I(n+ n0), Lg(0)|I(r) = rId, I(n0) 6= 0.

Since I 6= Ṽk(g), we have that n0 > 0, otherwise 1 ∈ I.

We can consider I(n0) as a finite-dimensional module for g and for the Zhu algebra A(Ṽk(g)).

Since the Casimir element Cg of g acts on I(n0) as the non-zero constant 2(k + h∨)n0, we conclude that

Cg acts by the same constant on any irreducible g–subquotient of I(n0). But any irreducible subquotient of

I(n0) is an irreducible finite–dimensional A(Ṽk(g))–module, and therefore it is trivial. This implies that Cg acts

non-trivially on a trivial g–module. A contradiction.
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Take the Chevalley generators ei, fi, hi, i = 0, . . . , `, of the Kac–Moody Lie algebra ĝ such that ei, fi, hi,

i = 1, . . . , `, are the Chevalley generators of g. Let σ be the Chevalley antiautomorphism of ĝ defined by

ei 7→ fi, fi 7→ ei, hi 7→ hi, d 7→ d (i = 0, . . . , `).

Assume that M is from the category O of non-critical level k. Then M admits the decomposition into

weight spaces M =
⊕

µ∈Ω(M)Mµ, where Ω(M) is the set of weights of M and dimMµ <∞ for every µ ∈ Ω(M).

For a finite-dimensional vector spaces U , let U∗ denote its dual space. Then we have the contravariant functor

M 7→Mσ [20] acting on modules from the category O. Here Mσ =
⊕

µ∈Ω(M)M
∗
µ is the ĝ–module uniquely

determined by

〈yw′, w〉 = 〈w′, σ(y)w〉, y ∈ ĝ, w′ ∈Mσ, w ∈M.

It is easy to see that M admits the decomposition

M =
⊕
α∈C

M(α), Lg(0)|M(α) ≡ α Id (9)

such that :

• for any α ∈ C we have M(α− n) = 0 for n ∈ Z sufficiently large;

• for any µ ∈ Ω(M) there exist α ∈ C such that Mµ ⊂M(α).

Proposition 3.4. Assume that a module M is in the category Ok. Then M is in the category KLk if and only

if M is g-locally finite.

Proof . If M is in KLk then it admits a decomposition as in (9). Since the spaces M(α) are g–stable and

finite-dimensional, M is g–locally finite.

Let us prove the converse. If M is a highest weight module which is g–locally finite, then clearly all

eigenspaces for Lg(0) are finite-dimensional. Assume now that M is an arbitrary g–locally finite module in

the category Ok. Take α ∈ C such that M(α) 6= {0}. Then from [20, Proposition 3.1] we see that M has an

increasing filtration (possibly infinite)

{0} = M0 ⊂M1 ⊂ · · · ⊂M (10)

such that for every j ∈ Z>0, Mj/Mj−1
∼= L̃(λj) is a highest weight V k(g)–module with highest weight λj ,

which is g–locally finite. Let hλj denotes the lowest conformal weight of L̃(λj). Since the factors Mi/Mi−1

(i ≤ j) of Mj are highest weight modules, their Lg(0)–eigenspaces are finite-dimensional. This implies that the

Lg(0)–eigenspaces of Mj is finite-dimensional. By using the properties of the category O one sees the following:
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• There exists a finite subset {d1, · · · , ds} ⊂ C such that α ∈
⋃s
i=1(di + Z≥0).

• For d ∈ C there exist only finitely many subquotients L̃(λj) in (10) such that hλj = d.

This implies that there is j0 ∈ Z>0 such that α < hλj for j ≥ j0. Therefore M(α) ⊂Mj0 . This proves that M(α)

is finite-dimensional.

Remark 3.5. We will use several times the following fact, which is a consequence of the previous proposition:

for any k /∈ Z≥0 and any irreducible highest weight module L(λ) in the category KLk, one has λ(α∨0 ) /∈ Z≥0.

Since σ(Lg(0)) = Lg(0), if M is in the category KLk, then Mσ is also in the category KLk. The next result

shows that this functor acts on the category KLk. In the proof we find an explicit relation of Mσ with the

contragradient modules, defined for ordinary modules for vertex operator algebras [24].

Lemma 3.6.

(1) Assume that M is a Vk(g)–module in the category O. Then Mσ is also a Vk(g)–module in the category O.

(2) Assume that M is a Vk(g)–module in the category KLk. Then Mσ is also in KLk.

Proof . Assume that M is a Vk(g)–module in the category O. Take the weight decomposition M =⊕
µ∈Ω(M)Mµ, and set M c =

⊕
µ∈Ω(M)M

∗
µ. By applying the same approach as in the construction of the

contragredient module from [24, Section 5], we get a Vk(g)–module (M c, YMc(·, z)), with vertex operator map

〈YMc(v, z)w′, w〉 = 〈w′, YM (ezLg(1)(−z−2)Lg(0)v, z)w〉, (11)

where w′ ∈M c, w ∈M . The ĝ–action on M c is uniquely determined by

〈x(n)w′, w〉 = −〈w′, x(−n)w〉 (x ∈ g).

As a vector space M c = Mσ, but we have different actions of ĝ. (Note that, in general, M c can be outside of

the category O.)

Take the Lie algebra automorphism h ∈ Aut(g) such that

ei 7→ −fi, fi 7→ −ei, hi 7→ −hi (i = 1, . . . , `).

Then h can be lifted to an automorphism of V k(g). Since the maximal ideal of V k(g) is unique, then it is

h–invariant, thus h is also an automorphism of Vk(g). Then we can define a Vk(g)–module (M c
h, YMc

h
(·, z)) where

M c
h := M c, YMc

h
(v, z) = YMc(hv, z).
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On M c
h we have

〈ei(n)w′, w〉 = 〈w′, fi(−n)w〉

〈fi(n)w′, w〉 = 〈w′, ei(−n)w〉

〈hi(n)w′, w〉 = 〈w′, hi(−n)w〉

where i = 1, . . . , `. This implies that M c
h = Mσ. This proves the assertion (1).

Assume now that M is in the category KLk. Then all Lg(0)–eigenspaces are finite-dimensional, thus

M c =
⊕

µ∈Ω(M)

M∗µ =
⊕
α∈C

M(α)∗.

This implies the Vk(g)–module (M c, YMc(·, z)) coincides with the contragredient module [24], realized on the

restricted dual space
⊕

α∈CM(α)∗, with the vertex operator map (11). Since the Lg(0)–eigenspaces of M c are

finite-dimensional, we conclude that M c and Mσ = M c
h are Vk(g)–modules in KLk. Claim (2) follows.

4 Constructions of vertex algebras with one irreducible module in KLk via collapsing

levels

By [4], if k is a collapsing level, then either Wk(g, θ) = C, Wk(g, θ) = M(1), or Wk(g, θ) = Vk′(a) for a unique

simple component a of g\. Here the level k′ is computed with respect to the invariant bilinear form of a normalized

so that the minimal root has squared length 2. For a = sl(m|n), m ≥ 2, the minimal root is always chosen to be

the lowest root of sl(m). For a = osp(m|n) we write spo(n|m) vs. osp(m|n) to specify the choice of the minimal

root. In all other cases the minimal root of a is unique.

To simplify notation define Vk′(g\) to be as follows:

Vk′(g
\) =


C if Wk(g, θ) = C; in this case we set k′ = 0;

M(1) if Wk(g, θ) = M(1); in this case we set k′ = 1;

Vk′(a) otherwise.

In Table 5 we summarize all the relevant data.

Assume that k /∈ Z≥0 and that:

(1) k is a collapsing level for g;

(2) Vk′(g\) is the unique irreducible Vk′(g\)–module in the category KLk′ .

Assume that L(Λ̂) is an irreducible Vk(g)-module in the category KLk. Set µ = Λ̂|h. By Proposition 3.4 we have

µ ∈ P+, hence, by (5), the weight µ has the form µ = µ\ + `θ with ` ∈ 1
2Z≥0, where µ\ = µ|h\ .
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Table 5

g Vk′(g\) k k′

sl(m|n), m 6= n,m > 3,m− 2 6= n Vk′(sl(m− 2|n))) n−m
2

n−m+2
2

sl(3|n), n 6= 3, n 6= 1, n 6= 0 Vk′(sl(1|n))) n−3
2

1−n
2

sl(3) C − 3
2 0

sl(2|n), n 6= 2, n 6= 1, n 6= 0 Vk′(sl(n))) n−2
2 −n2

sl(2|1) = spo(2|2) C − 1
2 0

sl(m|n), m 6= n, n+ 1, n+ 2,m ≥ 2 M(1) −1 1

psl(m|m), m ≥ 2 C −1 0

spo(n|m),m 6= n, n+ 2, n ≥ 4 Vk′(spo(n− 2|m)) m−n−4
4

m−n−2
4

spo(2|m),m ≥ 5 Vk′(so(m)) m−6
4

4−m
2

spo(2|3) Vk′(sl(2)) − 3
4 1

spo(2|1) C − 5
4 0

spo(n|m),m 6= n+ 1, n ≥ 2 C −1/2 0

osp(m|n),m 6= n,m 6= n+ 8,m ≥ 7 Vk′(osp(m− 4|n)) n−m+4
2

8−m+n
2

osp(m|n), n 6= m, 0; 4 ≤ m ≤ 6 Vk′(osp(m− 4|n)) n−m+4
2

m−n−8
4

osp(m|n),m 6= n+ 4, n+ 8;m ≥ 4 Vk′(sl(2)) −2 m−n−8
2

osp(n+ 8|n), n ≥ 0 C −2 0

D(2, 1; a) Vk′(sl(2)) a − 1+2a
1+a

D(2, 1; a) Vk′(sl(2)) −a− 1 − 1+2a
a

F (4) Vk′(D(2, 1; 2)) −1 1
2

F (4) C −3/2 0

F (4) Vk′(so(7)) 2
3 −2

F (4) C − 2
3 0

E6 Vk′(sl(6)) −4 −1

E6 C −3 0

E7 Vk′(so(12)) −6 −2

E7 C −4 0

E8 Vk′(E7) −10 −4

E8 C −6 0

F4 Vk′(sp(6)) −3 − 1
2

F4 C −5/2 0

G2 Vk′(sl(2)) − 4
3 1

G2 C − 5
3 0

G(3) Vk′(G2) 1
2 − 5

3

G(3) C − 3
4 0

G(3) Vk′(osp(3|2)) − 2
3 1

G(3) C − 4
3 0



An application of collapsing levels to the representation theory of affine vertex algebras 13

Since k /∈ Z≥0, by Theorem 2.1, Hθ(L(Λ̂)) is a non-trivial irreducible module for Wk(g, θ). Since L(Λ̂) is a

quotient of the Verma module M(Λ̂), then, by exactness of Hθ, Hθ(L(Λ̂)) is the quotient of a Verma module

for Wk(g, θ) = Vk′(g\) hence it is an irreducible highest weight module. By [36, (6.14)] its highest weight as

Vk(g\)-module is Λ̂\ with Λ̂\(K) = k′ and Λ̂\|h\ = µ\. Therefore

Hθ(L(Λ̂)) = Lg\(Λ̂
\).

In particular Hθ(L(Λ̂)) is in the category KLk′ .

Moreover, under the identification of the centralizer gf of f in g with g0 ⊕ g1/2 via ad(f) (see Example 6.2

of [36]), we get that x acts on Hθ(L(Λ̂)) via J
{f}
0 , and J{f} is the conformal vector of W (k, θ) (see the proof of

Theorem 5.1 of [36]). Since the level is collapsing we know, by Proposition 4.1 of [4], that the conformal vector

of Wk(g, θ) coincides with the Segal-Sugawara vector conformal ωg\ of Vk′(g\) hence, by (6.14) of [36] again, we

obtain that the (ωg\)0 acts on the lowest component of Hθ(L(Λ̂)) by cI with

c =
(µ+ 2ρ, µ)

2(k + h∨)
− µ(x). (12)

Now condition (2) implies that µ\ = 0, so µ = `θ and

(µ+ 2ρ, µ)

2(k + h∨)
− µ(x) =

(`θ + 2ρ, `θ)

2(k + h∨)
− ` = 0.

By using formula (4), we get

2`2 + (2h∨ − 2)`

2(k + h∨)
− ` =

`2 − (k + 1)`

k + h∨
= 0. (13)

• Consider first the case k = −h∨/2 + 1 (this holds for g = D2n, n ≥ 2 and g = osp(n+ 4m+ 8|n), n ≥ 0).

Then (13) gives that

2`2 + (h∨ − 4)`

h∨ + 2
= 0. (14)

We get ` = 0 or 2`+ h∨ − 4 = 0.

• Next we consider the case k = −h∨/6− 1. We get

6`2 + h∨`

5h∨ − 6
= 0. (15)

We conclude that ` = 0 or ` = −h
∨

6 .

By using the above analysis and properties of Hamiltonian reduction, we get the following lemma, which extends

a result of [15] for Lie algebras to the super case.
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Lemma 4.1. Assume that k = −h
∨

6 − 1 and g is one of the Lie algebras of exceptional Deligne’s series A2, G2,

D4, F4, E6, E7, E8, or g = psl(m|m) (m ≥ 2), osp(n+ 8|n) (n ≥ 2), spo(2|1), F (4), G(3) (for both choices of

θ).

Assume that L(λ) is a Vk(g)–module in the category O. Then one of the following condition holds:

(1) λ(α∨0 ) ∈ Z≥0;

(2) λ̄ is either 0 or −h
∨

6 θ, where λ̄ is the restriction of λ to h.

Proof . By Theorem 2.1, if L(λ) is a Vk(g)–module for which λ(α∨0 ) /∈ Z≥0, then Hθ(L(λ)) is an irreducible

Wk(g, θ) = Hθ(Vk(g))–module. The conditions on g exactly correspond to the cases when Wk(g, θ) is one-

dimensional (cf. [4], [15]), so the discussion that precedes the Lemma and relation (15) imply that λ̄ is as

in (2).

Lemma 4.1 implies:

Theorem 4.2. Assume that the level k and the Lie superalgebra g satisfy one of the following conditions:

(1) k = −h
∨

6 − 1 and g is one of the Lie algebras of exceptional Deligne’s series A2, G2, D4, F4, E6, E7, E8,

or g = psl(m|m) (m ≥ 2), osp(n+ 8|n) (n ≥ 2), spo(2|1), F (4), G(3) (for both choices of θ);

(2) k = −h∨/2 + 1 and g = osp(n+ 4m+ 8|n), n ≥ 2,m ≥ 0.

(3) k = −h∨/2 + 1 and g = D2m, m ≥ 2.

(4) k = −10 and g = E8.

Then Vk(g) is the unique irreducible Vk(g)–module in the category KLk.

Proof . If the Lie superalgebra g is as in (1), then Lemma 4.1 and Remark 3.5 imply that λ̄ is either 0 or −h
∨

6 θ.

Since in all cases in (1) we have that h∨ ∈ Z≥0, one obtains that the irreducible highest weight g–module with

highest weight λ̄ = −h∨
6 θ cannot be finite-dimensional. Therefore L(λ) can not be a module in KLk. This proves

that λ̄ = 0 and therefore Vk(g) is the unique irreducible Vk(g)–module in the category KLk.

Let us consider the case g = osp(n+ 4m+ 8|n). Then for every m ∈ Z≥0 we have:

h∨ = 4m+ 6, (16)

k = −h∨/2 + 1 = −2(m+ 1), (17)

2`+ h∨ − 4 6= 0 ∀` ∈ 1

2
Z≥0. (18)

We prove the claim by induction. In the case m = 0, the claim was proved in (1). Assume now that the

claim holds for g′ = osp(n+ 4(m− 1) + 8, n), and k′ = −2m.
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By Theorem 2.3, k = −2(m+ 1) is a collapsing level and Wk(g, θ) = Vk′(g′).

By inductive assumption Vk′(g′) is the unique irreducible Vk′(g′) in the category KLk′ . By applying (14)

and (18) we get that ` = 0 and therefore Vk(g) is the unique irreducible Vk(g)–module in the category KLk.

The assertion now follows by induction on m.

(3) is a special case of (2), by taking n = 0.

(4) follows from the fact that Hθ(V−10(E8)) = V−4(E7) and case (1) by applying formula (13).

Remark 4.3. Theorem 4.2 can be also proved by non-cohomological methods, using explicit formulas for

singular vectors and Zhu algebra theory. As an illustration, we shall present in Theorem 8.6 a direct proof in

the case of D2n at level k = −h∨/2 + 1.

In the following sections we shall study some other applications of collapsing levels. We shall restrict our

analysis to the case of Lie algebras. In what follows we let ω1, . . . , ωn be the fundamental weights for g and

Λ0, . . . ,Λn the fundamental weights for ĝ.

5 On complete reducibility in the category KLk

In this Section we prove complete reducibility results in the category KLk when g is a Lie algebra. We start

with a preliminary result, which also holds in the super setting.

Lemma 5.1. Assume that the Lie superalgebra g and level k satisfy the conditions of Theorem 4.2. Assume

that M is a highest weight Vk(g)–module from the category KLk. Then M is irreducible.

Proof . By using the classification of irreducible modules from Theorem 4.2 we know that the highest weight

of M is necessary kΛ0, and therefore M is a Z≥0–graded with respect to Lg(0). Denote a highest weight vector

by wkΛ0
. We have that

Lg(0)v = 0 ⇐⇒ v = νwkΛ0
(ν ∈ C).

Assume that M is not irreducible. Then it contains a non-zero graded submodule N 6= M with respect to Lg(0):

N =
⊕
n∈Z≥0

N(n+ n0), Lg(0)|N(r) = rId, N(n0) 6= 0.

Since N 6= M , we have that n0 > 0, otherwise wkΛ0
∈M .

We can consider N(n0) as a finite-dimensional module for g and for the Zhu algebra A(Vk(g)). Note that

Theorem 4.2 and Proposition 3.2 imply that any irreducible finite-dimensional A(Vk(g))–module is trivial. Since

the Casimir element Cg of g acts on N(n0) as the non-zero constant 2(k + h∨)n0, we conclude that Cg acts by

the same constant on any irreducible g–subquotient of N(n0). But any irreducible subquotient of N(n0) is an
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irreducible finite–dimensional A(Vk(g))–module, and therefore it is trivial. This implies that Cg acts non-trivially

on a trivial g–module. A contradiction.

The following Lemma is a consequence of [28, Theorem 0.1].

Lemma 5.2. [28] Assume that g is a simple Lie algebra and k is a rational number, k > −h∨. Then, in the

category of Vk(g)–modules, we have: Ext1(Vk(g), Vk(g)) = (0).

Theorem 5.3. Assume that g is a simple Lie algebra and that the level k satisfies the conditions of Theorem

4.2. Then any Vk(g)–module M from the category KLk is completely reducible.

Proof . Since M is in KLk we have that any irreducible subquotient of M is isomorphic to Vk(g). M has finite

length. This implies that M is Z≥0–graded:

M =
⊕
n∈Z≥0

M(n), Lg(0)|M(r) = rId.

Assume that M(0) = spanC{w1, . . . , ws}. Then by Lemma 5.1 we have that Vk(g)wi ∼= Vk(g) for every i =

1, . . . , s. Now using Lemma 5.2 we get M ∼= ⊕Vk(g)wi and therefore M is completely reducible.

Remark 5.4. We expect that the previous theorem holds in the case when g is the Lie superalgebra from

Theorem 4.2. We shall study this case in [7].

We shall now prove much more general result on complete reducibility in KLk.

Theorem 5.5. Assume that level k ∈ Q, k > −h∨, and the simple Lie algebra g satisfy the following property:

Every highest weight Vk(g)–module in KLk is irreducible. (19)

Then the category KLk is semi-simple.

Proof . We shall present a sketch of the proof and omit some standard representation theoretic arguments which

can be found in [20] and [28].

• Since every irreducible Vk(g)-module in KLk is isomorphic to L(λ) for certain rational, non-critical weight

λ, then [28, Theorem 0.1] implies that Ext1(L(λ), L(λ)) = (0) in the category KLk.

• We prove that in the category KLk we have

Ext1(L1, L2) = (0) (20)
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for any two irreducible modules L1 and L2 from KLk.

It remains to consider the case L1 6= L2. Take an exact sequence in KLk:

0→ L(λ1)→M → L(λ2)→ 0,

where λ1 6= λ2. Then M contains a singular vector wλ1
of highest weight λ1 and a subsingular vector wλ2

of weight λ2 and wλ1 generates a submodule isomorphic to L(λ1). Consider the case λ1 − λ2 /∈ Q+. Then

λ2 is a maximal element of the set Ω(M) of weights of M , and therefore the subsingular vector wλ2
in M

of weight λ2 is a singular vector. By (19), it generates an irreducible module isomorphic to L(λ2) and we

conclude that M ∼= L(λ1)⊕ L(λ2).

If λ1 − λ2 ∈ Q+ we can use the contravariant functor M 7→Mσ and get an exact sequence

0→ L(λ2)→Mσ → L(λ1)→ 0.

Since Mσ is again a Vk(g)–module in KLk (cf. Lemma 3.6) by the first case we have that Mσ =

L(λ1)⊕ L(λ2). This implies that

M = L(λ1)σ ⊕ L(λ2)σ = L(λ1)⊕ L(λ2).

• Assume now that M is a finitely generated module from KLk. Then from [20, Proposition 3.1] we see that

M has an increasing filtration

(0) = M0 ⊆M1 ⊆ · · · (21)

such that

1. for every j ∈ Z>0, Mj/Mj−1 is an highest weight module in category O;

2. for any weight λ of M , there exists r such that (M/Mr)λ = 0.

Since M is finitely generated as ĝ–module, we can assume that its generators are weight vectors of weights

say µ1, ...µp. Since they are a finite number there certainly exists t such that (M/Mt)µi = 0 for all i = 1, .., p.

Hence the filtration (21) is finite and stops at M = Mt. Since M is in category KLk, we have that the

factors of (21) are in category KLk. Hence, by our assumption, they are irreducible. Therefore (21) is a

composition series of finite length Using assumption (19), relation (20) and induction on t we get that

M ∼=
t⊕

j=1

L(λj).

• Finally we shall consider the case when M is not finitely generated. Since M is in KLk, it is countably

generated. So M = ∪∞n=1M
(n) such that each M (n) is finitely generated Vk(g)–module. By previous case
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M (n) is completely reducible, so:

M (n) =

ni⊕
i=1

L(λi,n). (22)

Therefore M is a sum of irreducible modules from KLk and by using classical algebraic arguments one can

see that M is a direct sum of countably many irreducible modules from KLk appearing in decompositions

(22).

The claim follows.

In order to apply Theorem 5.5, the basic step is to check relation (19). We have the following method.

Lemma 5.6. Let k ∈ Q \ Z≥0. Assume that Hθ(U) is an irreducible, non-zero Wk(g, θ) = Hθ(Vk(g))–module for

every non-zero highest weight Vk(g)–module U from the category KLk. Then every highest weight Vk(g)–module

in KLk is irreducible.

Proof . Assume that M is a highest weight Vk(g)–module in KLk. Then Hθ(M) is an irreducible Hθ(Vk(g))–

module. If M is not irreducible, then it contains a highest weight submodule U such that {0} $ U $M . Modules

U and M/U are again highest weight modules in KLk. By the assumption of the Lemma we have that Hθ(U)

is a non-trivial submodule of Hθ(M). Irreducibility of Hθ(M) implies that Hθ(U) = Hθ(M), and therefore

Hθ(M/U) = {0}. A contradiction.

Theorem 5.7. Assume that g is a simple Lie algebra and k ∈ C \ Z≥0 such that Wk(g, θ) is rational. Then

KLk is a semi-simple category.

Proof . Assume that L̃(λ) is a highest weight Vk(g)–module in KLk. Clearly λ(α∨0 ) /∈ Z≥0 and by Theorem 2.1

Hθ(L̃(λ)) 6= (0). Since Hθ(L̃(λ)) is non-zero highest weight module for the rational vertex algebra Wk(g, θ), we

conclude that Hθ(L̃(λ)) is irreducible. Now assertion follows from Theorem 5.5 and Lemma 5.6.

Remark 5.8. The previous theorem proves that the category KLk is semisimple in the following (non-

admissible) cases:

• g = D4, E6, E7, E8 and k = −h
∨

6 using results from [39].

Moreover, using Theorem 5.5 and Lemma 5.6 we can prove the semi-simplicity of KLk for all collapsing

levels not accounted by Theorem 1.1. We list here only non-admissible levels, since in admissible case KLk is

semi-simple by [12].
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Theorem 5.9. The category KLk is semisimple in the following cases:

(1) g = D`, ` ≥ 3 and k = −2;

(2) g = B`, ` ≥ 2 and k = −2;

(3) g = A`, ` ≥ 2 and k = −1;

(4) g = A2`−1, ` ≥ 2, k = −`;

(5) g = D2`−1, ` ≥ 3 and k = −2`+ 3;

(6) g = C`, k = −1− `/2;

(7) g = E6, k = −4;

(8) g = E7, k = −6;

(9) g = F4, k = −3.

Proof . We will give a proof of relations (1) and (2) in Corollaries 6.8 and 7.7, respectively. Case (1) for ` 6= 3

will follow from Theorem 5.7. Note also that case (1) for ` = 3 is a special case of case (4), and that case (2) for

` = 2 is a special case of (6). The proof in cases (3) – (6) is similar, and it uses the classification of irreducible

modules from [10], [11], [16] and the results on collapsing levels [4]. Cases (7) – (9) are reduced to cases we have

already treated. Here are some details.

Case (3):

• [16], [4] Hθ(V−1(A`)) is isomorphic to the Heisenberg vertex algebra M(1) of central charge c = 1

• By using the fact that every highest weight M(1)–module is irreducible, we see that if U is a highest

weight V−1(A`)–module in KL−1, then Hθ(U) is a non-trivial irreducible M(1)–module.

Case (4):

• [16], [4] Hθ(V−`(A2`−1)) = V−`+1(A2`−3).

• For ` = 2, we have that every highest weight V−`+1(A2`−3) = V−1(sl(2))–module L̃(λ) in KL−1 with

highest weight λ = −(1 + j)Λ0 + jΛ1, j ∈ Z≥0, is irreducible.

• By induction, we see that for every highest weight V−`(A2`−1)–module U in KL−`, Hθ(U) is a non-trivial

irreducible V−`+1(A2`−3)–module.

Case (5)

• Hθ(V−2`+3(D2`−1)) ∼= V−2`+5(D2`−3).

• By induction we see that for or every highest weight V−2`+3(D2`−1)–module U in KL−2`+3 , Hθ(U) is a

non-trivial irreducible V−2`+5(D2`−3)–module.

Case (6)
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• Hθ(V−1−`/2(C`)) ∼= V−1/2−`/2(C`−1).

• For ` = 2, we have that every highest weight V−1/2−`/2(C`−1) = V−3/2(sl(2))–module in KL−3/2 is

irreducible.

• By induction, we see that for every highest weight V−1−`/2(C`)–module U in KL−1−`/2, Hθ(U) is a

non-trivial irreducible V−1/2−`/2(C`−1)–module.

The proof follows by applying Theorem 5.5 and Lemma 5.6.

Cases (7) – (8)

We have

Hθ(V−4(E6)) = V−1(A3), Hθ(V−6(E7)) = V−2(D6),

and these cases are settled in (3) and Theorem 1.1 (3) respectively. Case (9) follows from the fact that

Hθ(V−3(F4)) is isomorphic to the admissible affine vertex algebra V− 1
2
(C3) which is semisimple in KL−1/2

(cf. [1]).

Remark 5.10. The problem of complete-reducibility of modules in KLk when g is a Lie superalgebra will be

also studied in [7]. An important tool in the description of the category KLk will be the conformal embedding

of Ṽk(g0) to Vk(g) where g0 is the even part of g.

Note that in the category O we can have indecomposable Vk(g)–modules in some cases listed in Theorem

5.9. See [10, Remark 5.8] for one example.

6 The vertex algebra V −2(D`) and its quotients

In this section we exploit Hamiltonian reduction and the results on conformal embeddings from [4] to investigate

the quotients of the vertex algebra V −2(D`). In particular we are interested in a non-simple quotient V−2(D`)

which appears in the analysis of certain dual pairs (see [6]) as well as in the simple quotient V−2(D`). We will

show that the vertex algebra V−2(D`) has infinitely many irreducible modules in the category KL−2, while by

[15], V−2(D`) has finitely many irreducible modules in KL−2. Recall that −2 is a collapsing level for D` [4].

Consider the vector

w1 := (eε1+ε2(−1)eε3+ε4(−1)− eε1+ε3(−1)eε2+ε4(−1) + eε1+ε4(−1)eε2+ε3(−1))1. (23)

It is a singular vector in V −2(D`) (cf. [15]). Note that this vector is contained in the subalgebra V −2(D4) of

V −2(D`).

By using the explicit expression for singular vectors vn in V n−`+1(D`) (see (28)), we have that

w2 := v`−3 =
(∑̀
i=2

eε1−εi(−1)eε1+εi(−1)
)`−3

1 (24)
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is a singular vector in V −2(D`).

For ` = 4 we also have a third singular vector (cf. [40])

w3 := (eε1+ε2(−1)eε3−ε4(−1)− eε1+ε3(−1)eε2−ε4(−1) + eε1−ε4(−1)eε2+ε3(−1))1.

6.1 The vertex algebra V−2(D`) for ` ≥ 4

Define the vertex algebra

V−2(D`) = V −2(D`)
/
J`, (25)

where

J` = 〈w1, w3〉 (` = 4), J` = 〈w1〉 (` ≥ 5).

The following proposition is essentially proven in [6].

Proposition 6.1.

(1) There is a non-trivial vertex algebra homomorphism Φ : V−2(D`)→M2` where M2` the Weyl vertex algebra

of rank `.

(2) V−2(D`) is not simple, and L((−2− t)Λ0 + tΛ1), t ∈ Z≥0 are V−2(D`)–modules.

Proof . The homomorphism Φ : V −2(D`)→M2` was constructed in [6, Section 7]. By direct calculation one

proves that Φ(w1) = 0 for ` ≥ 4 and Φ(w3) = 0 for ` = 4. Finally [6, Lemma 7.1] implies that L((−2− t)Λ0 +

tΛ1), t ∈ Z≥0 are V−2(D`)–modules. Since the simple vertex algebra V−2(D`) has only finitely many irreducible

modules in the category O [15], we have that V−2(D`) is not simple.

Next, we exploit the fact that in the case g = D`, k = −2 is a collapsing level, i.e., in the affine W -algebra

W k(g, θ), all generators G{u} at conformal weight 3/2, u ∈ g−1/2, belong to the maximal ideal (see [4] for

details). This implies that there exists a non-trivial ideal I in V −2(g) such that G{u} ∈ Hθ(I) for all u ∈ g−1/2.

Note also that g\ = A1 ⊕D`−2, so we have that V `−4(A1)⊗ V 0(D`−2) is a subalgebra of W−2(D`, θ). In

the case ` = 4 we identify D2 with A1 ⊕A1.

Lemma 6.2. We have

• x(−1)1 ∈ Hθ(J`) for all x ∈ D`−2 ⊂ g\,

• G{u} ∈ Hθ(J`) for all u ∈ g−1/2.
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Proof . Assume that ` ≥ 5. Since w1 is a singular vector in V −2(D`), the ideal J` is a highest weight module

of highest weight λ = −2Λ0 + ε1 + ε2 + ε3 + ε4. Now, the Main Theorem from [12] implies that Hθ(J`) is a

non-trivial highest weight module. By formula [36, (6.14)] the highest weight is (0, ω2) and, by (12), the

conformal weight of its highest weight vector is 1. Up to a non-zero constant, there is only one vector in

W−2(D`, θ) = V `−4(A1)⊗ V 0(D`−2) that has these properties, namely J
{eε3+ε4

}
(−1) 1, and therefore Hθ(J`) contains

all generators of V 0(D`−2).

In the case ` = 4, w1 and w3 generate submodules N1 and N3 of highest weights λ1 = −2Λ0 + ε1 +

ε2 + ε3 + ε4 , λ3 = −2Λ0 + ε1 + ε2 + ε3 − ε4, respectively. Applying the same arguments as above we get that

J
{eε3±ε4}
(−1) 1 ∈ Hθ(I), which implies that Hθ(J`) contains all generators of V 0(D2) = V 0(A1)⊗ V 0(A1).

Now, claim follows by applying the action of generators of V 0(D`−2) to G{u} (see [4]).

Proposition 6.3. We have

(1) Hθ(V−2(D`)) = V `−4(A1).

(2) Hθ(L((−2− t)Λ0 + tΛ1)) ∼= LA1((`− 4− t)Λ0 + tΛ1), t ∈ Z≥0.

(3) The set {L((−2− t)Λ0 + tΛ1) | t ∈ Z≥0} provides a complete list of irreducible V−2(D`)–modules from the

category KL−2.

Proof . By Lemma 6.2 we see that the vertex algebra Hθ(V−2(D`)) is generated only by x(−1)1, x ∈ A1 ⊂ D\
`.

So there are only two possibilities: either Hθ(V−2(D`)) = V `−4(A1) or Hθ(V−2(D`)) = V`−4(A1). Moreover, for

every t ∈ Z≥0, Hθ(L((−2− t)Λ0 + tΛ1)) must be the irreducible Hθ(V−2(D`))–module with highest weight tω1

with respect to A1. So Hθ(L((−2− t)Λ0 + tΛ1)) ∼= LA1
((`− 4− t)Λ0 + tΛ1), t ∈ Z≥0. Therefore, Hθ(V−2(D`))

contains infinitely many irreducible modules, which gives that Hθ(V−2(D`)) = V `−4(A1). In this way we have

proved claims (1) and (2).

Let us now prove claim (3).

Assume that L(kΛ0 + µ) (µ ∈ P+, k = −2) is an irreducible Vk(D`)–module in the category KLk. Then

Hθ(L(kΛ0 + µ)) is a non-trivial irreducible V `−4(A1)–module. The representation theory of V `−4(A1) implies

that:

Hθ(L(kΛ0 + µ)) = LA1((`− 4− j)Λ0 + jΛ1) for j ∈ Z≥0.

Since D\
` = A1 ×D`−2, we conclude that µ\ = jω1 and therefore, by (5),

µ = jω1 + sω2 = (s+ j)ε1 + sε2 (s ∈ Z≥0).

By using the action of L(0) = ω0 on the lowest component of Hθ(L(kΛ0 + µ)) we get

(µ+ 2ρ, µ)

2(k + h∨)
− µ(x) =

j(j + 2)

4(`− 2)
(x = θ∨/2).
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Since 2(k + h∨) = 2(−2 + 2`− 2) = 4(`− 2) and µ(x) = (2s+ j)/2 we get

(µ+ 2ρ, µ)− (h∨ − 2)(2s+ j) = j(j + 2).

By direct calculation we get

(µ+ 2ρ, µ) = (s+ j)2 + s2 + h∨(s+ j) + (h∨ − 2)s,

which gives an equation:

(s+ j)2 + s2 + h∨(s+ j) + (h∨ − 2)s− (h∨ − 2)(2s+ j) = j(j + 2).

⇐⇒ (s+ j)2 + s2 + h∨(s+ j)− (h∨ − 2)(s+ j) = j(j + 2).

⇐⇒ (s+ j)(s+ j + 2) = j(j + 2)

⇐⇒ s = 0 or s = −2j − 2.

Since µ ∈ P+ we conclude that s = 0. Therefore µ = jω1 for certain j ∈ Z≥0. The proof of claim (3) is now

complete.

6.2 The simple vertex algebra V−2(D`)

Next we use the fact that the simple affine W -algebra W−2(D`, θ) is isomorphic to the simple affine vertex

algebra V`−4(A1), for ` ≥ 4.

Proposition 6.4. The set {L((−2− j)Λ0 + jΛ1) | j ∈ Z≥0, j ≤ `− 4} provides a complete list of irreducible

V−2(D`)–modules from the category KL−2.

Proof . Assume that N is an irreducible V−2(D`)–module from the category KL−2. Then N is also irreducible

as V−2(D`)–module, and therefore N ∼= L((−2− j)Λ0 + jΛ1) for certain j ∈ Z≥0. Since Hθ(N) must be an

irreducible Hθ(V−2(D`)) = W−2(D`, θ) = V`−4(A1)–module, we get j ≤ `− 4, as desired.

Now we want to describe the maximal ideal in V −2(D`). The next lemma states that any non-trivial ideal

in V−2(D`) is automatically maximal.

Lemma 6.5. Let {0} 6= I $ V−2(D`) be any non-trivial ideal in V−2(D`). Then we have

(1) Hθ(I) is the maximal ideal in V `−4(A1).

(2) I is a maximal ideal in V−2(D`) and I = L(−2(`− 2)Λ0 + 2(`− 3)Λ1).
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Proof . Assume that I is a non-trivial ideal in V−2(D`). Then I can be regarded as a V−2(D`)–module in

the category KL−2 and therefore, by Proposition 6.3, (3), it contains a non-trivial subquotient isomorphic

to L((−2− j)Λ0 + jΛ1) for some j ∈ Z≥0. Since, by part (2) of the aforementioned Proposition, Hθ(L((−2−

j)Λ0 + jΛ1)) 6= 0 for every j ∈ Z≥0, we conclude that Hθ(I) is a non-trivial ideal in Hθ(V−2(D`)) = V `−4(A1).

But since V `−4(A1), ` ≥ 4, contains a unique non-trivial ideal, which is automatically maximal, we have that

Hθ(I) is a maximal ideal in V `−4(A1). So

Hθ(V−2(D`)/I) ∼= V`−4(A1).

Assume now that V−2(D`)/I is not simple. Then it contains a non-trivial singular vector v′ of weight

−(2 + j)Λ0 + jΛ1 for j ∈ Z>0. By [12], we have that Hθ(V
−2(D`).v

′) is a non-trivial ideal in V`−4(A1) generated

by a singular vector of A1–weight jω1. This is a contradiction. So I is the maximal ideal.

Since the maximal ideal in V `−4(A1) is generated by a singular vector of A1–weight 2(`− 3)ω1 and since

the maximal ideal is simple, we conclude that I = V−2(D`).vsing for a certain singular vector vsing of weight

λ = −2(`− 2)Λ0 + 2(`− 3)Λ1. It is also clear that this singular vector is unique, up to scalar factor. Therefore,

I = L(−2(`− 2)Λ0 + 2(`− 3)Λ1).

Note that in the previous lemma we proved the existence of a singular vector which generates the maximal

ideal without presenting a formula for such a singular vector. Since the vector in (24) has the correct weight,

we also have an explicit expression for this singular vector:

(∑̀
i=2

eε1−εi(−1)eε1+εi(−1)
)`−3

1

Corollary 6.6.

(1) The maximal ideal in V −2(D`) is generated by the vectors w1 and w2 for ` ≥ 5 and by the vectors w1, w2,

w3 for ` = 4.

(2) The homomorphism Φ : V−2(D`)→M2` is injective. In particular, the vertex algebra V−2(D`)⊗ V−`(A1) is

conformally embedded into V−1/2(C2`).

(3) ch(V−2(D`)) = ch(V−2(D`)) + chL(−2(`− 2))Λ0 + 2(`− 3)Λ1).

Remark 6.7. D. Gaiotto in [27] has started a study of the decomposition of M2` as a V −2(D`)⊗ V−`(A1)–

module in the case ` = 4. By combining results from [6, Section 8] and results from this Section we get that

Com(V−`(A1),M2`) ∼= V−2(D`).
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So the vertex algebra responsible for the decomposition ofM2` is exactly V−2(D`). Therefore in the decomposition

of M2` only modules for V−2(D`) can appear. In our forthcoming papers we plan to apply the representation

theory of V−2(D`) to the problem of finding branching rules.

Corollary 6.8. For ` ≥ 3 the category KL−2 is semi-simple.

Proof . The assertion in the case ` ≥ 4 follows from Theorem 5.7 since then W−2(D`, θ) = V`−4(sl(2)) is a

rational vertex algebra.

In the case ` = 3, we have that a highest weight V−2(D3)–module M is isomorphic to L̃((−2− j)Λ0 + jΛ1)

where j ∈ Z≥0. The irreducibility of M follows easily from the fact that Hθ(M) is isomorphic to an irreducible

V−1(sl(2))–module LA1
(−1− j)Λ0 + jΛ1). Now claim follows from Theorem 5.5 and Lemma 5.6.

7 The vertex algebra V −2(B`) and its quotients

In this section let ` ≥ 2. Note that k = −2 is a collapsing level for B` [4], and that the simple affine W -algebra

W−2(B`, θ) is isomorphic to V`− 7
2
(A1). This implies that Hθ(V−2(B`)) = V`− 7

2
(A1). But as in the case of the

affine Lie algebra of type D, we can construct an intermediate vertex algebra V so that Hθ(V) = V `−7/2(A1).

Remark 7.1. The formula for a singular vector of conformal weight two in V −2(B`) was given in [15, Theorem

4.2] for ` ≥ 3, and in [15, Remark 4.3] for ` = 2. Note that, for ` ≥ 4, the vector σ(w2) from [15] is equal to the

vector w1 from relation (23), i.e. it is contained in the subalgebra V −2(D4). For ` = 3, we have

w1 = (eε1+ε2(−1)eε3(−1)− eε1+ε3(−1)eε2(−1) + eε1(−1)eε2+ε3(−1))1.

For ` = 2, the singular vector of conformal weight two in V −2(B2) is equal to

w1 = (eε1+ε2(−1)e−ε2(−1) +
1

2
hε2(−1)eε1(−1)− eε1−ε2(−1)eε2(−1))1.

Consider the singular vector in V −2(B`) denoted by σ(w2) in [15, Theorem 4.2] and [17, Section 7]. Let us

denote that singular vector by w1 in this paper (see Remark 7.1 for explanation).

Then we have the quotient vertex algebra

V−2(B`) = V −2(B`)
/
〈w1〉. (26)

As in the case of the vertex algebra V−2(D`), we have the non-trivial homomorphism V−2(B`)→M2`+1.

The proof of the following result is completely analogous to the proof of Proposition 6.3 and it is therefore

omitted.
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Proposition 7.2. We have

(1) There is a non-trivial homomorphism Φ : V−2(B`)→M2`+1.

(2) Hθ(V−2(B`)) = V `−7/2(A1).

(3) Hθ(L((−2− t)Λ0 + tΛ1)) ∼= LA1((`− 7/2− t)Λ0 + tΛ1), t ∈ Z≥0.

(4) The set

{L((−2− t)Λ0 + tΛ1) | t ∈ Z≥0} (27)

provides a complete list of irreducible V−2(B`)–modules from the category KL−2.

We have the following result on classification of irreducible modules.

Proposition 7.3. Assume that ` ≥ 3. Then the set {L((−2− j)Λ0 + jΛ1) | j ∈ Z≥0, j ≤ 2(`− 3) + 1} provides

a complete list of irreducible V−2(B`)–modules from the category KL−2.

Proof . The proof is analogous to the proof of Proposition 6.4: it uses the exactness of the functor Hθ and the

representation theory of affine vertex algebras. In particular, we use the result from [8] which gives that the set

{L(−(`− 7/2)− j)Λ0 + jΛ1) | j ∈ Z≥0, j ≤ 2(`− 3) + 1}

provides a complete list of irreducible V`−7/2(A1)–modules from the category KL`−7/2.

An important consequence is the simplicity of the vertex algebra V−2(B2).

Corollary 7.4. The vertex algebra V−2(B`) is simple if and only if ` = 2. In particular, the set (27) provides

a complete list of irreducible modules for V−2(B2) in KL−2.

Proof . Since by Proposition 7.2, V−2(B`) has infinitely many irreducible modules in the category KL−2, and,

by Proposition 7.3, V −2(B`) has finitely many irreducible modules in the category KL−2 (if ` ≥ 3), we conclude

that V−2(B`) cannot be simple for ` ≥ 3.

Let us consider the case ` = 2. Assume that V−2(B2) is not simple. Then it must contain an ideal I generated

by a singular vector of weight λ = (−2− j)Λ0 + jΛ1 for certain j > 0. By applying the functor Hθ, we get a

non-trivial ideal in V −3/2(A1), against the simplicity of V −3/2(A1).

Next we notice that V `−7/2(A1) has a unique non-trivial ideal J which is generated by a singular vector

of A1–weight 2(`− 2)ω1. The ideal J is maximal and simple (cf. [5]). By combining this with properties of the

functor Hθ from [12], one proves the existence of a unique maximal ideal I (which is also simple) in V−2(B`)

such that I ∼= L(−2(`− 1)Λ0 + 2(`− 2)Λ1)).
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Remark 7.5. The explicit expression for a singular vector which generates I is more complicated that in the

case D, and it won’t be presented here.

In [6] we constructed a homomorphism V−2(B`)⊗ V−`−1/2(A1)→M2`+1. The results of this section enable

us to find the image of this homomorphism.

Corollary 7.6. We have:

(1) The vertex algebra V−2(B`)⊗ V−`−1/2(A1) is conformally embedded into V−1/2(C2`+1).

(2) The vertex algebra V−2(B`) for ` ≥ 3 contains a unique ideal I ∼= L(−2(`− 1)Λ0 + 2(`− 2)Λ1)) and

ch(V−2(B`)) = ch(V−2(B`)) + ch(L(−2(`− 1)Λ0 + 2(`− 2)Λ1)).

Finally, we apply Theorem 5.5 and prove that KL−2 is a semi-simple category.

Corollary 7.7. If ` ≥ 2, then every V−2(B`)–module in KL−2 is completely reducible.

Proof . It suffices to prove that every highest weight V−2(B`)–module in KL−2 is irreducible. Assume that

` ≥ 3. If M ∼= L̃(λ) is a highest weight module in KL−2 then the highest weight is λ = −(2 + j)Λ0 + jΛ1 where

0 ≤ j ≤ 2(`− 3)j + 1. Since Hθ(L(λ)) is a non-zero highest weight V−`+7/2(sl(2))–module, then the complete

reducibility result from [8] implies that Hθ(L(λ)) is irreducible. The assertion now follows from Lemma 5.6. The

proof in the case ` = 2 is similar, and it uses the classification of irreducible V−2(B2)–modules from Corollary

7.4 and the fact that every highest weight V−3/2(sl(2)) = Hθ(V−2(B2))–module in KL−3/2 is irreducible.

8 On the representation theory of V2−`(D`)

8.1 The vertex algebra V 2−`(D`)

Let g be a simple Lie algebra of type D`. Recall that 2− ` = −h∨/2 + 1 is a collapsing level [4]. We have the

singular vector

vn =
(∑̀
i=2

eε1−εi(−1)eε1+εi(−1)
)n

1 (28)

in V n−`+1(D`), for any n ∈ Z>0. As in [40], we consider the vertex algebra

V 2−`(D`) = V 2−`(D`)
/
〈v1〉, (29)

where 〈v1〉 denotes the ideal in V 2−`(D`) generated by the singular vector v1. We recall the following result on

the classification of irreducible V 2−`(D`)–modules in the category KL2−`.
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Proposition 8.1. [40]

(1) The set

{V (tω`), V (tω`−1) | t ∈ Z≥0}

provides a complete list of irreducible finite-dimensional modules for the Zhu algebra A(V 2−`(D`)).

(2) The set

{L((2− t− `)Λ0 + tΛ`), L((2− t− `)Λ0 + tΛ`−1) | t ∈ Z≥0}

provides a complete list of irreducible V 2−`(D`)–modules from the category KL2−`.

In the odd rank case D2`−1, the modules from Proposition 8.1 (2) provide a complete list of irreducible

V3−2`(D2`−1)–modules from the category KL3−2` (cf. [11]). The paper [11] also contains a fusion rules result in

the category KL3−2`. Detailed fusion rules analysis will be presented elsewhere.

On the other hand, Theorem 4.2 implies that in the even rank case D2`, V2−2`(D2`) is the unique irreducible

V2−2`(D2`)–module from the category KL2−2`. In the next section we will give an explanation of this difference

using singular vectors existing in the even rank case D2`.

8.2 Singular vectors in V n−2`+1(D2`)

In this section, we construct more singular vectors in V n−2`+1(D2`). In the case n = 1, we show that the maximal

submodule of V 2−2`(D2`) is generated by three singular vectors. We present explicit formulas for these singular

vectors.

Let g be a simple Lie algebra of type D2`. Denote by S2` the group of permutations of 2` elements. Let

Π` =
{
p ∈ S2` | p2 = 1, p(i) 6= i,∀i ∈ {1, . . . , 2`}

}

be the set of fixed-points free involutions, which is well known to have (2`− 1)!! = 1 · 3 · . . . · (2`− 1) elements.

For i 6= j, denote by (i j) ∈ S2` the transposition of i and j. Then, any p ∈ Π` admits a unique decomposition

of the form:

p = (i1 j1) · · · (i` j`),

such that ih < jh for 1 ≤ h ≤ `, and i1 < . . . < i`. Define a permutation p̄ ∈ S2` by:

p̄(2h− 1) = ih, p̄(2h) = jh, 1 ≤ h ≤ `.

Thus, we have a well defined map p 7→ p̄ from Π` to S2`. Define the function s : Π` → {±1} as follows:

s(p) = sign(p̄),
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where sign(q) denotes the sign of the permutation q ∈ S2`.

We have:

Theorem 8.2. The vector

wn =
( ∑
p∈Π`

s(p)
∏

i∈{1,...,2`}
i<p(i)

eεi+εp(i)(−1)
)n

1 (30)

is a singular vector in V n−2`+1(D2`), for any n ∈ Z>0.

Proof . Direct verification of relations eεk−εk+1
(0)wn = 0, for k = 1, . . . , 2`− 1, eε2`−1+ε2`(0)wn = 0 and

e−(ε1+ε2)(1)wn = 0.

Remark 8.3. The vector wn has conformal weight n` and its g–highest weight equals 2nω2` = n(ε1 + . . .+ ε2`).

In particular, for n = 1, the vector w1 has conformal weight ` and highest weight 2ω2` = ε1 + . . .+ ε2`.

Example 8.4. Set n = 1 for simplicity. For ` = 2 we recover the singular vector

w1 = (eε1+ε2(−1)eε3+ε4(−1)− eε1+ε3(−1)eε2+ε4(−1) + eε1+ε4(−1)eε2+ε3(−1))1

in V −2(D4) of conformal weight 2 from [40]. For ` = 3, the formula for the singular vector in V −4(D6) of

conformal weight 3 is more complicated. It is a sum of 5!! = 15 monomials:

w1 = (eε1+ε2(−1)eε3+ε4(−1)eε5+ε6(−1)− eε1+ε2(−1)eε3+ε5(−1)eε4+ε6(−1)

+eε1+ε2(−1)eε3+ε6(−1)eε4+ε5(−1)− eε1+ε3(−1)eε2+ε4(−1)eε5+ε6(−1)

+eε1+ε3(−1)eε2+ε5(−1)eε4+ε6(−1)− eε1+ε3(−1)eε2+ε6(−1)eε4+ε5(−1)

+eε1+ε4(−1)eε2+ε3(−1)eε5+ε6(−1)− eε1+ε4(−1)eε2+ε5(−1)eε3+ε6(−1)

+eε1+ε4(−1)eε2+ε6(−1)eε3+ε5(−1)− eε1+ε5(−1)eε2+ε3(−1)eε4+ε6(−1)

+eε1+ε5(−1)eε2+ε4(−1)eε3+ε6(−1)− eε1+ε5(−1)eε2+ε6(−1)eε3+ε4(−1)

+eε1+ε6(−1)eε2+ε3(−1)eε4+ε5(−1)− eε1+ε6(−1)eε2+ε4(−1)eε3+ε5(−1)

+eε1+ε6(−1)eε2+ε5(−1)eε3+ε4(−1))1.

Denote by ϑ the automorphism of V n−2`+1(D2`) induced by the automorphism of the Dynkin diagram of

D2` of order two such that

ϑ(εk − εk+1) = εk − εk+1, k = 1, . . . , 2`− 2, (31)

ϑ(ε2`−1 − ε2`) = ε2`−1 + ε2`, ϑ(ε2`−1 + ε2`) = ε2`−1 − ε2`. (32)
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Theorem 8.2 now implies that ϑ(wn) is a singular vector in V n−2`+1(D2`), for any n ∈ Z>0, also. The vector

ϑ(wn) has conformal weight n` and its highest weight for g is 2nω2`−1 = n(ε1 + . . .+ ε2`−1 − ε2`).

We consider the associated quotient vertex algebra

Ṽn−2`+1(D2`) := V n−2`+1(D2`)
/
〈vn, wn, ϑ(wn)〉, (33)

where vn is given by relation (28) (for D2`):

vn =
( 2∑̀
i=2

eε1−εi(−1)eε1+εi(−1)
)n

1.

In particular, for n = 1 we have the vertex algebra

Ṽ2−2`(D2`) = V 2−2`(D2`)
/
〈v1, w1, ϑ(w1)〉.

Clearly, Ṽ2−2`(D2`) is a quotient of vertex algebra V 2−2`(D2`) from Subsection 8.1. The associated Zhu algebra

is

A(Ṽ2−2`(D2`)) = U(g)
/
〈v̄, w̄, ϑ(w̄)〉,

where

v̄ =

2∑̀
i=2

eε1−εieε1+εi , w̄ =
∑
p∈Π`

s(p)
∏

i∈{1,...,2`}
i<p(i)

eεi+εp(i) .

Lemma 8.5. We have:

(1) w̄V (tω2`) 6= 0, for t ∈ Z>0.

(2) ϑ(w̄)V (tω2`−1) 6= 0, for t ∈ Z>0.

Proof . (1) Let t = 1. Denote by vω2`
the highest weight vector of V (ω2`), and by v−ω2`

the lowest weight vector

of V (ω2`). One can easily check, using the spinor realization of V (ω2`), that there exists a constant C 6= 0 such

that

w̄(v−ω2`
) = Cvω2`

.

For general t ∈ Z>0, the claim follows using the embedding of V (tω2`) into V (ω2`)
⊗t. Claim (2) follows

similarly.

Theorem 8.6. We have:

(i) The trivial module C is the unique finite-dimensional irreducible module for A(Ṽ2−2`(D2`)).
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(ii) V2−2`(D2`) is the unique irreducible g–locally finite module for Ṽ2−2`(D2`).

(iii) The vertex operator algebra Ṽ2−2`(D2`) is simple, i.e.

V2−2`(D2`) = V 2−2`(D2`)
/
〈v1, w1, ϑ(w1)〉.

Proof . (i) Proposition 8.1 implies that the set

{V (tω2`), V (tω2`−1) | t ∈ Z≥0}

provides a complete list of finite-dimensional irreducible modules for the algebra U(g)
/
〈v̄〉 = A(V 2−2`(D2`)).

Lemma 8.5 shows that V (tω2`) and V (tω2`−1) are not modules for A(Ṽ2−2`(D2`)), for t ∈ Z>0. Claim (i) follows.

Claims (ii) and (iii) follow from (i) by applying Proposition 3.2 and Corollary 3.3.

Remark 8.7. A general character formula for certain simple affine vertex algebras at negative integer levels

has been recently presented by V. G. Kac and M. Wakimoto in [38], (more precisely, g = An, Cn for k = −1

and g = D4, E6, E7, E8 for k = −2,−3,−4, 6). Note that conditions (i)-(iii) of [38, Theorem 3.1] hold for vertex

algebras V−b(Dn), n > 4, b = 1, . . . , n− 2, too. We conjecture that condition (iv) of this theorem holds as well;

therefore formula (3.1) in [38] gives the character formula.

9 Conformal embedding of Ṽ (−4, D6 ×A1) into V−4(E7)

In this section, we apply the results on representation theory of V−4(D6) from previous sections to the conformal

embedding of Ṽ (−4, D6 ×A1) into V−4(E7). This gives us an interesting example of a maximal semisimple equal

rank subalgebra such that the associated conformally embedded subalgebra is not simple.

We use the construction of the root system of type E7 from [19], [29], and the notation for root vectors

similar to the notation for root vectors for E6 from [9].

For a subset S = {i1, . . . , ik} ⊆ {1, 2, 3, 4, 5, 6}, i1 < . . . < ik, with odd number of elements (so that k = 1, 3

or 5), denote by e(i1...ik) a suitably chosen root vector associated to the positive root

1

2

(
ε8 − ε7 +

6∑
i=1

(−1)p(i)εi

)
,

such that p(i) = 0 for i ∈ S and p(i) = 1 for i /∈ S. We will use the symbol f(i1...ik) for the root vector associated

to corresponding negative root.
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Note now that the subalgebra of E7 generated by positive root vectors

eε6+ε5 , eα1
= e(1), eα3

= eε2−ε1 , eα4
= eε3−ε2 , eα2

= eε1+ε2 , eα5
= eε4−ε3 (34)

and the associated negative root vectors is a simple Lie algebra of type D6. There are 30 root vectors associated

to positive roots for D6:

eε6+ε5 , eε8−ε7 ,

e(i), i ∈ {1, 2, 3, 4},

e(ijk), i, j, k ∈ {1, 2, 3, 4}, i < j < k,

e(i56), i ∈ {1, 2, 3, 4},

e(ijk56), i, j, k ∈ {1, 2, 3, 4}, i < j < k,

e±εi+εj , i, j ∈ {1, 2, 3, 4}, i < j. (35)

Furthermore, the subalgebra of E7 generated by eε6−ε5 and the associated negative root vector is a simple Lie

algebra of type A1. Thus, D6 ⊕A1 is a semisimple subalgebra of E7.

It follows from [3], [9] that the affine vertex algebra Ṽ (−4, D6 ×A1) is conformally embedded in

V−4(E7). Remark that Ṽ (−4, A1) = V−4(A1) (since V −4(A1) = V−4(A1)). This implies that Ṽ (−4, D6 ×A1) ∼=

Ṽ (−4, D6)⊗ V−4(A1).

It was shown in [15] that

vE7
= (eε8−ε7(−1)eε6+ε5(−1) + e(156)(−1)e(23456)(−1) +

+e(256)(−1)e(13456)(−1) + e(356)(−1)e(12456)(−1) +

+e(456)(−1)e(12356)(−1))1 (36)

is a singular vector in V −4(E7). Moreover,

V−4(E7) ∼= V −4(E7)
/
〈vE7
〉.

Vectors (e(12346)(−1))s1, for s ∈ Z>0 are (non-trivial) singular vectors for the affinization of D6 ⊕A1

in V−4(E7) of highest weights −(s+ 4)Λ0 + sΛ6 for D
(1)
6 and −(s+ 4)Λ0 + sΛ1 for A

(1)
1 . Thus there exist

highest weight modules L̃D6
(−(s+ 4)Λ0 + sΛ6) and L̃A1

(−(s+ 4)Λ0 + sΛ1), for D
(1)
6 and A

(1)
1 , respectively

such that (Ṽ (−4, D6)⊗ V−4(A1)).(e(12346)(−1))s1 is isomorphic to L̃D6(−(s+ 4)Λ0 + sΛ6)⊗ L̃A1(−(s+ 4)Λ0 +

sΛ1). This implies that

LD6
(−(s+ 4)Λ0 + sΛ6)⊗ LA1

(−(s+ 4)Λ0 + sΛ1)
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are irreducible Ṽ (−4, D6 ×A1)–modules, for s ∈ Z>0.

In particular, LD6
(−(s+ 4)Λ0 + sΛ6) are irreducible (D6–locally finite) Ṽ (−4, D6)–modules, for s ∈ Z>0.

In the next proposition, we use the notation from (29), (30), (31), (32).

Proposition 9.1. We have:

(1) Assume that L̃D6(−6Λ0 + 2Λ6) and L̃D6(−6Λ0 + 2Λ5) are highest weight V −4(D6)–modules from the

category KL−4, not necessarily irreducible. Then

L̃D6
(−6Λ0 + 2Λ6) � L̃D6

(−6Λ0 + 2Λ5) = 0,

where � is the tensor functor for KL−4–modules. In other words, we cannot have a non-zero V −4(D6)–module

M from KL−4 and a non-zero intertwining operator of type

(
M

L̃D6
(−6Λ0 + 2Λ6) L̃D6

(−6Λ0 + 2Λ5)

)
. (37)

(2) Relations w1 6= 0 and ϑ(w1) = 0 hold in V−4(E7). In particular, Ṽ (−4, D6) is not simple.

Proof . For the proof of assertion (1) we first notice that the following decomposition of D6–modules holds:

VD6(2ω6)⊗ VD6(2ω5) = VD6(2ω5 + 2ω6)⊕ VD6(ω3 + ω5 + ω6)⊕ VD6(2ω3)

⊕VD6(ω1 + ω5 + ω6)⊕ VD6(ω1 + ω3)⊕ VD6(2ω1). (38)

Assume that M is a non-zero V −4(D6)–module in the category KL−4 such that there is a non-trivial intertwining

operator of type (37). Then the Frenkel-Zhu formula for fusion rules implies that M must contain a non-trivial

subquotient whose lowest graded component appears in the decomposition of VD6
(2ω6)⊗ VD6

(2ω5). But by

Proposition 8.1, the D6–modules appearing in (38) cannot be lowest components of any V −4(D6)–module. This

proves assertion (1).

Assertion (1) implies that if w1 6= 0 and ϑ(w1) 6= 0 in V−4(E7), then

Y (w1, z)ϑ(w1) = 0.

A contradiction since V−4(E7) is a simple vertex algebra. The same fusion rules argument shows that if ϑ(w1) 6= 0

in V−4(E7), then

Y (ϑ(w1), z)e(12346)(−1)21 = 0,

which again contradicts the simplicity of V−4(E7). So, ϑ(w1) = 0.
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But if w1 = 0, then, by Theorem 8.6 (iii), we have that Ṽ (−4, D6) = V−4(D6). Theorem 4.2 implies that

Ṽ (−4, D6) is not simple, since the simple vertex operator algebra V−4(D6) has only one irreducible D6–locally

finite module. A contradiction. So w1 6= 0 and claim (2) follows.

Set

V−4(D6) =
V −4(D6)

< v1, ϑ(w1) >
. (39)

Theorem 9.2. We have:

(1) Ṽ (−4, D6) ∼= V−4(D6).

(2) The set {LD6
(−(s+ 4)Λ0 + sΛ6) | s ∈ Z≥0} provides a complete list of irreducible V−4(D6)–modules.

Proof . We first notice that Ṽ (−4, D6) is a certain quotient of V −4(D6)
<v1,ϑ(w1)> , and that

Hθ(
V −4(D6)

< v1, ϑ(w1) >
) = V−2(D4).

Since V−2(D4) contains a unique non-trivial ideal which is maximal and simple, we conclude that V −4(D6)
<v1,ϑ(w1)>

also contains a unique ideal, and it must be the ideal generated by w1. Since in Ṽ (−4, D6) we have that w1 6= 0,

we conclude that

Ṽ (−4, D6) ∼=
V −4(D6)

< v1, ϑ(w1) >
.

The proof of assertion (2) follows from (1), the classification result of V −4(D6)–modules from Proposition 8.1

and Lemma 8.5.
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vertex algebras in minimal W -algebras I: Structural results.” J. Algebra 500 (2018): 117–152.

[5] Adamović D., Kac V. G., Möseneder Frajria P., Papi P., and Perše O. ”Conformal embeddings of affine
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