The Milan Cathedral, whose main structures were erected between 1386 and 1813, is one of the largest masonry monuments ever built. Within the traditional collaboration between Politecnico di Milano and Veneranda Fabbrica del Duomo di Milano–the historic Institution established in 1387 and responsible for the preservation and development of the Cathedral–a structural monitoring system was recently designed and implemented with the two-fold objective of assisting the condition-based structural maintenance of the Cathedral and creating a large archive of experimental data, useful to improve the knowledge of the monument. The new monitoring system, fully computer based and with efficient transmission of the collected data, includes static and dynamic measurements. The static monitoring system consists of: (a) bi-axial tilt-meters installed at the top of selected piers and at 3 levels of the Main Spire; (b) vibrating wire extensometers mounted on the iron tie-rods which are characterized by the higher tensile stress; (c) temperature and humidity sensors for the measurement of internal and external environmental parameters. The dynamic monitoring is performed through seismometers (electro-dynamic velocity sensors) installed at the top of 14 selected piers and at 3 levels of the Main Spire. After a concise historic background on the Milan Cathedral and the description of the sensing devices installed in the church, the paper focuses on the results obtained during the first months of monitoring (since October 16th, 2018) and the lessons learned in view of the Structural Health Monitoring (SHM) of the monument.

Long-term monitoring for the condition-based structural maintenance of the Milan Cathedral

Gentile C.;Ruccolo A.;
2019-01-01

Abstract

The Milan Cathedral, whose main structures were erected between 1386 and 1813, is one of the largest masonry monuments ever built. Within the traditional collaboration between Politecnico di Milano and Veneranda Fabbrica del Duomo di Milano–the historic Institution established in 1387 and responsible for the preservation and development of the Cathedral–a structural monitoring system was recently designed and implemented with the two-fold objective of assisting the condition-based structural maintenance of the Cathedral and creating a large archive of experimental data, useful to improve the knowledge of the monument. The new monitoring system, fully computer based and with efficient transmission of the collected data, includes static and dynamic measurements. The static monitoring system consists of: (a) bi-axial tilt-meters installed at the top of selected piers and at 3 levels of the Main Spire; (b) vibrating wire extensometers mounted on the iron tie-rods which are characterized by the higher tensile stress; (c) temperature and humidity sensors for the measurement of internal and external environmental parameters. The dynamic monitoring is performed through seismometers (electro-dynamic velocity sensors) installed at the top of 14 selected piers and at 3 levels of the Main Spire. After a concise historic background on the Milan Cathedral and the description of the sensing devices installed in the church, the paper focuses on the results obtained during the first months of monitoring (since October 16th, 2018) and the lessons learned in view of the Structural Health Monitoring (SHM) of the monument.
2019
Cathedral of Milan; Condition-based maintenance; Continuous monitoring; Mode shapes; Natural frequencies; Temperature
File in questo prodotto:
File Dimensione Formato  
JCBM_117101_Preprint.pdf

accesso aperto

Descrizione: JCBM_117101_Preprint.pdf
: Pre-Print (o Pre-Refereeing)
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1124068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 34
social impact