In this work, we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid. The nonlinear elasticity operator is discretized using a Hybrid High-Order method, while the Darcy operator relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, supports arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for linearized versions of the problem. Moreover, the proposed construction can handle both nonzero and vanishing specific storage coefficients.
A Hybrid High-Order Discretization Method for Nonlinear Poroelasticity
Botti M.;
2019-01-01
Abstract
In this work, we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid. The nonlinear elasticity operator is discretized using a Hybrid High-Order method, while the Darcy operator relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, supports arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for linearized versions of the problem. Moreover, the proposed construction can handle both nonzero and vanishing specific storage coefficients.File | Dimensione | Formato | |
---|---|---|---|
CMAM-2018-0142.pdf
accesso aperto
Descrizione: Articolo principale
:
Pre-Print (o Pre-Refereeing)
Dimensione
357.1 kB
Formato
Adobe PDF
|
357.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.