Twin-to-Twin Transfusion Syndrome is commonly treated with minimally invasive laser surgery in fetoscopy. The inter-foetal membrane is used as a reference to find abnormal anastomoses. Membrane identification is a challenging task due to small field of view of the camera, presence of amniotic liquid, foetus movement, illumination changes and noise. This paper aims at providing automatic and fast membrane segmentation in fetoscopic images. We implemented an adversarial network consisting of two Fully-Convolutional Neural Networks. The former (the segmentor) is a segmentation network inspired by U-Net and integrated with residual blocks, whereas the latter acts as critic and is made only of the encoding path of the segmentor. A dataset of 900 images acquired in 6 surgical cases was collected and labelled to validate the proposed approach. The adversarial networks achieved a median Dice similarity coefficient of 91.91% with Inter-Quartile Range (IQR) of 4.63%, overcoming approaches based on U-Net (82.98%-IQR: 14.41%) and U-Net with residual blocks (86.13%-IQR: 13.63%). Results proved that the proposed architecture could be a valuable and robust solution to assist surgeons in providing membrane identification while performing fetoscopic surgery.

Inter-foetus Membrane Segmentation for TTTS Using Adversarial Networks

Casella, Alessandro;Moccia, Sara;De Momi, Elena;
2020

Abstract

Twin-to-Twin Transfusion Syndrome is commonly treated with minimally invasive laser surgery in fetoscopy. The inter-foetal membrane is used as a reference to find abnormal anastomoses. Membrane identification is a challenging task due to small field of view of the camera, presence of amniotic liquid, foetus movement, illumination changes and noise. This paper aims at providing automatic and fast membrane segmentation in fetoscopic images. We implemented an adversarial network consisting of two Fully-Convolutional Neural Networks. The former (the segmentor) is a segmentation network inspired by U-Net and integrated with residual blocks, whereas the latter acts as critic and is made only of the encoding path of the segmentor. A dataset of 900 images acquired in 6 surgical cases was collected and labelled to validate the proposed approach. The adversarial networks achieved a median Dice similarity coefficient of 91.91% with Inter-Quartile Range (IQR) of 4.63%, overcoming approaches based on U-Net (82.98%-IQR: 14.41%) and U-Net with residual blocks (86.13%-IQR: 13.63%). Results proved that the proposed architecture could be a valuable and robust solution to assist surgeons in providing membrane identification while performing fetoscopic surgery.
Deep Learning
Adversarial networks
Fetoscopy
Intraoperative-image segmentation
File in questo prodotto:
File Dimensione Formato  
Casella___ABME___2019__Copy_-2.pdf

accesso aperto

Descrizione: Draft
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1121585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact