Several examples of control strategies for the seismic protection of civil structures, ranging from passive to active and semi-active have been presented in the scientific literature, and often applied in the market. However, none of them proved to be absent of high employment costs or burdensome installations. For this reason, the low-cost Active Mass Damper (AMD) shown in this work and capable of automated self-tuning, control and continuous monitoring of the structures represents an attractive solution. The device has been designed and tested on the numerical model of a scaled steel made three story building. In particular its working principle and the ISAAC algorithm for automatic identification are presented and its robustness against modelling and estimation errors is analyzed. The methodology allows to avoid the study of specific solutions for each case, thus making possible the adoption of such systems also for already existing and common structures.

Active self-tuned mass damper for vibration control and continuous monitoring of civil structures

Ripamonti F.;Bussini A.;Resta F.
2019-01-01

Abstract

Several examples of control strategies for the seismic protection of civil structures, ranging from passive to active and semi-active have been presented in the scientific literature, and often applied in the market. However, none of them proved to be absent of high employment costs or burdensome installations. For this reason, the low-cost Active Mass Damper (AMD) shown in this work and capable of automated self-tuning, control and continuous monitoring of the structures represents an attractive solution. The device has been designed and tested on the numerical model of a scaled steel made three story building. In particular its working principle and the ISAAC algorithm for automatic identification are presented and its robustness against modelling and estimation errors is analyzed. The methodology allows to avoid the study of specific solutions for each case, thus making possible the adoption of such systems also for already existing and common structures.
2019
Proceedings of SPIE - The International Society for Optical Engineering
9781510625952
9781510625969
Active control; Automated modal analysis; Seismic protection
File in questo prodotto:
File Dimensione Formato  
NDE2019_SSN06-6_10970-96.pdf

Accesso riservato

Descrizione: Articolo
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1119287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact