Heliotropic orbits and frozen orbits possess unique advantages in Earth observation missions and communication service. However, few scholars have found an orbit that possesses heliotropic and frozen characteristics at the same time. Heliotropic frozen orbits are obtained through a proposed control strategy, which is accomplished by adjusting the area-to-mass ratio and the attitude angles. First, we construct the dynamical model of high area-to-mass ratio spacecraft under the effect of J(2) perturbation and solar radiation pressure. Then, nominal heliotropic frozen orbits are solved by assuming that the obliquity angle of the ecliptic with respect to the equator is zero. Finally, a control strategy is proposed to maintain heliotropic frozen orbits when the obliquity angle of the ecliptic with respect to the equator is considered. In addition, practical examples are provided to verify the heliotropic and frozen characteristics and the robustness of the controlled orbits. Orbit design for Earth observation and communication service is also studied.

Heliotropic frozen orbits design for high area-to-mass ratio spacecraft

Colombo C.
2019-01-01

Abstract

Heliotropic orbits and frozen orbits possess unique advantages in Earth observation missions and communication service. However, few scholars have found an orbit that possesses heliotropic and frozen characteristics at the same time. Heliotropic frozen orbits are obtained through a proposed control strategy, which is accomplished by adjusting the area-to-mass ratio and the attitude angles. First, we construct the dynamical model of high area-to-mass ratio spacecraft under the effect of J(2) perturbation and solar radiation pressure. Then, nominal heliotropic frozen orbits are solved by assuming that the obliquity angle of the ecliptic with respect to the equator is zero. Finally, a control strategy is proposed to maintain heliotropic frozen orbits when the obliquity angle of the ecliptic with respect to the equator is considered. In addition, practical examples are provided to verify the heliotropic and frozen characteristics and the robustness of the controlled orbits. Orbit design for Earth observation and communication service is also studied.
2019
heliotropic frozen orbits; high area-to-mass ratio spacecraft; J2 perturbation; solar radiation pressure
File in questo prodotto:
File Dimensione Formato  
LUOTX_OA_01-19.pdf

Open Access dal 05/09/2019

Descrizione: Paper Open Access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1118261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact