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Abstract 

Heliotropic orbits and frozen orbits both possess unique advantages in Earth observation missions and 

communication service. However, few scholars have found an orbit which possesses heliotropic and 

frozen characteristics at the same time. This paper obtains novel heliotropic frozen orbits through a 

proposed control strategy, which is accomplished by adjusting the area-to-mass ratio and the attitude 

angles. First, we construct the dynamical model of high area-to-mass ratio spacecraft under the effect 

of J2 perturbation and solar radiation pressure. Then, nominal heliotropic frozen orbits are solved by 

assuming that the obliquity angle of the ecliptic with respect to the equator is zero. Finally, a control 

strategy is proposed to maintain heliotropic frozen orbits when the obliquity angle of the ecliptic with 

respect to the equator is considered. In addition, practical examples are provided to verify the 

heliotropic and frozen characteristics and the robustness of the controlled orbits. Orbit design for Earth 

observation and communication service is also studied. 

Key Words: Heliotropic frozen orbits; High area-to-mass ratio spacecraft; J2 perturbation; Solar 

                                                 
1 PhD candidate, School of Astronautics, Beihang University, luotong@buaa.edu.cn. 
2 Associate professor, School of Astronautics, Beihang University, xuming@buaa.edu.cn (Corresponding Author). 
3 Associate professor, Department of Aerospace Science and Technology, Politecnico di Milano, camilla.colombo@polimi.it. 



2 

 

radiation pressure 

1. Introduction 

Benefiting from the developments in microelectromechanical systems, an innovative spacecraft 

concept “smart dust” is proposed. The microchips in smart dust can offer the capabilities of sensing, 

computing, and communication, and the small size of smart dust can reduce production costs, favours 

standardization, and overcomes the limitations imposed by launch and deployment costs. Thus, smart 

dust has many potential applications, including global sensing networks for Earth observation [1], 

Earth climate engineering [2], geomagnetic exploration [3], and communication systems for 

conventional spacecraft operating in the interplanetary space [4]. In addition, solar sailing technology 

can propel a spacecraft to high speed via solar radiation pressure (SRP) [5]. The advantage that solar 

sail can provide a continuous acceleration limited only by the lifetime of the sail materials in the space 

environment makes it a perfect option for deep space exploration. Since 2010, several solar sail 

spacecraft missions have been completed, such as NanoSail-D2 [6], the Interplanetary Kite-Craft 

Accelerated by Radiation of the Sun (IKAROS) [7], and LightSail1 [8]. 

Smart dust has a characteristic side length of some centimeters or ever some millimeters, while 

solar sail has a very large area. As a result, they both possess high area-to-mass ratio property and will 

motion on a non-Keplerian orbit under the effect of perturbations, such as SRP [9], atmospheric drag 

[10], and electrostatic forces [11]. Colombo and McInnes [12] obtained long-term equilibrium orbits 

for a space-chip device by balancing the perturbations due to solar radiation and atmospheric drag. 

Früh and Jah [13] proposed a semi-coupled approach for propagating the attitude and orbital dynamics 

of objects near the geostationary ring. Zhao et al. [14] investigated the long-term evolution of the smart 
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dust’s orbit with the consideration of the gravitational potential. Mengali et al. [15] [16] studied the 

heliocentric dynamics of sun-pointing smart dust which can provide an outward propulsive 

acceleration directed along the sun-smart dust line. 

Because the apogee of a heliotropic orbit always points in the direction of the Sun, spacecraft 

motioning on this orbit will spend the largest portion of time on the Sun facing side of the orbit. 

Colombo and McInnes [17] constructed constellations of heliotropic orbits for enhanced earth 

coverage. Lantukh et al. [18] proposed a constrained double averaging method to solve the semi-

analytical solutions of inclined heliotropic orbits at oblate asteroids. Later, Russell et al. [19] also 

adopted the constrained double averaging method and obtained more precise solutions of heliotropic 

orbits by considering zonal harmonics and simple shadowing. However, the above heliotropic orbits 

are all obtained by assuming that the obliquity angle of the “ecliptic” with respect to the “equator” is 

zero. As for frozen orbits, their greatest advantages are that the variations of orbital elements are 

theoretically zero and the effort for orbit maintenance can be reduced [20]. Thus, many Earth 

observation missions, such as SEASATA, LANDSAT, GEOSAT, SPOT, ERS, and Topex/Poseidon, 

were all placed into a frozen orbit [21] [22]. In addition, the frozen orbit can also be applied to a lunar 

mapping mission [23] and swarm mission [24]. 

Heliotropic orbit and frozen orbit have been widely studied because of their advantages and 

potential applications. However, few scholars have found an orbit which possesses heliotropic and 

frozen characteristic at the same time. This paper focuses on the motion of high area-to-mass ratio 

spacecraft on medium earth orbit where it is mainly perturbed by J2 and SRP. Considering the obliquity 

angle of the ecliptic with respect to the equator, no natural heliotropic frozen orbit can be theoretically 

solved from the dynamical equations. Then, we obtain novel heliotropic frozen orbits through a 
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proposed control strategy which is accomplished by adjusting the area-to-mass ratio and the attitude 

angles. This paper is organized as follows. Section 2 constructs the dynamical model of high area-to-

mass ratio spacecraft under the effect of J2 and SRP. Section 3 gives solutions of nominal heliotropic 

frozen orbits by ignoring the obliquity angle of the ecliptic with respect to the equator. Section 4 

proposes a control strategy to maintain the nominal heliotropic frozen orbits, verifies the control 

strategy through practical examples, and studies the robustness, applications of the controlled 

heliotropic frozen orbits. 

2. Dynamical model 

2.1. Disturbing potential functions 

The motion of high area-to-mass ratio spacecraft orbiting the Earth is markedly perturbed by the 

oblateness of Earth and SRP. According to ref [25], the orbit-average disturbing function associated 

with Earth’s oblateness J2 is 

 

2 2

2 3/2

2

2 2

3cos 1,
6 (1 )
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2
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na iR Wn
e

R nW J
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  (1) 

where W is oblateness parameter, n is the mean motion velocity of the spacecraft, J2 is the second zonal 

coefficient, R is the equatorial radius of the Earth, and nsun is the orbital angular velocity of the Earth 

around the Sun (circular Earth orbit is adopted). 

The disturbing potential function associated with SRP is closely related to the normal vector of 

the spacecraft’s sail. To determine the orientation of the normal vector, we can define two coordinate 

systems, namely the inertial coordinate system Sg and body coordinate system Sb. As shown in Fig. 1, 

the origin of Sg is located at the center of the Earth, the x-axis of Sg points to the vernal equinox, the z-
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axis of Sg points to the North Pole, and the y-axis of Sg is determined by the right-hand rule. The origin 

of Sb is located at the center of the Earth, and the x-axis of Sb is along the normal vector of the 

spacecraft’s sail. Sb can be obtained through two basic coordinate rotations from Sg, namely 

, where two rotation angles  and  are shown in the spherical triangle of Fig. 1. Thus, the 

coordinate transformation matrix from Sb to Sg is obtained as 

 
1 0 0 cos sin 0 cos
0 cos sin sin cos 0 cos sin .
0 sin cos 0 0 1 sin sin

gb x zL L L   (2) 

According to Ref [5], the SRP acceleration can be expressed as 
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where psrp denotes the SRP on unit area’s sail, cr denotes the sail’s reflectivity coefficient dependent 

on sail’s material, Asun denotes the sail’s area exposed to the Sun, m denotes the mass of the spacecraft, 

 denotes the spacecraft’s effective area-to-mass ratio, n denotes the unit normal vector of sail surface 

in Sb, and  denotes the angle between the Earth-Sun line and the sail’s normal vector (the vector 

directed from the Sun to the spacecraft’s center is assumed the same with the Sun-Earth line direction 

because the distance between the spacecraft and Earth can be ignored compared to the distance 

between Sun and Earth). Based on the definition of Sb, n is exactly the opposite direction of the x-axis 

of Sb and can be expressed as 

 1 0 0 .T
bn   (4) 

Then, the expression of n in Sg can be obtained as 

 
cos 1 cos
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Fig. 1. The three-dimensional geometric diagram for a high area-to-mass ratio spacecraft’s orbit. 

Because the SRP acceleration is the gradient of disturbing potential function, the corresponding 

function can be derived as 

 2cos cos cos sin sin sin ,srp srpR p x y z   (6) 

where (x, y, z) is the coordinate position of the spacecraft in Sg. The values of x, y, and z are related to 

orbital elements by following equations 

 
cos cos sin sin cos ,

cos sin sin sin cos ,

sin sin ,

x r f f i

y r f f i

z r f i

  (7) 

where r is the real-time distance between the spacecraft and Earth,  is the argument of pericenter, f is 

the true anomaly,  is longitude of the node, and i is orbital inclination with respect to the equatorial 

plane. Substituting Eqs. (7) into Eq. (6) and performing the average method in orbit, we can obtain 

orbit-average disturbing function with SRP as 
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2
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where Csrp is a radiative parameter. With the application of spherical trigonometry to the spherical 

triangle in Fig. 1, Eq. (8) can be simplified into 
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 2 2cos cos cos sin sin cos ,srp srp sunR C n na e i   (9) 

2.2. Lagrange planetary equations 

The change rates of orbital elements can be expressed by Lagrange planetary equations [26], 

which are given by 
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where R is the disturbing function. Inserting Eqs. (1) and (9) into Eqs. (10), we can derive the change 

rates of orbital elements as 
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We define a characteristic angle = + dir( - sun) to describe the orientation of the spacecraft respect 

to the Sun. The retrograde factor dir is determined as dir=1 for prograde orbits and dir=-1 for 
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retrograde orbits. Then an orbit is heliotropic when = ± , while anti-heliotropic when = 0. Thus, 

heliotropic frozen orbits require the orbital elements to satisfy 

 
0,      0,      0,

0,         ,sun

e i
n

 (12)  

where the first three equations are the conditions for frozen characteristic, and the last two are the 

conditions for heliotropic characteristic. 

3. Nominal heliotropic frozen orbits 

Because variables , , and  will change irregularly in general cases, no analytical solutions exist 

for Eqs. (12). To obtain possible solutions of heliotropic frozen orbits, we will simplify the problem 

through following assumptions. Suppose that the normal vector of the spacecraft’s sail is always along 

the Earth-Sun line, and the obliquity angle of the ecliptic with respect to the equator is zero, we will 

obtain =0, =0, = sun, sun=0, = , and = sun- . Then the change rates of e, i, , and  are simplified 

into 
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Based on the conditions 0e  and 0i  in Eqs. (12), we derive the following constraints for 

variables  and : 

 sin cos 0,      cos sin 0.   (14) 

Eight groups feasible values of  and  can be solved from Eqs. (14), and we summary them in the 
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following table. 

Table 1. Eight groups feasible values of  and  

( , ) cos cos  sin sin  heliotropic orbits anti-heliotropic orbits 

(0, 0) or ( , ) 1 0 none all 

(0, ) or ( , 0) -1 0 all none 

(
2

, 
2

) or (
2

, 
2

) 0 1 i>
2

 i<
2

 

(
2

, 
2

) or (
2

, 
2

) 0 -1 i<
2

 i>
2

 

As shown in Table 1, eight groups of feasible values are divided into four different cases according to 

the values of cos cos  and sin sin . When cos cos =1 and sin sin =0, all solutions are anti-

heliotropic orbits. Thus we do not study this case in the following part. When cos cos =-1 and 

sin sin =0, all solutions are heliotropic orbits. When cos cos =0 and sin sin =1, retrograde orbits 

are heliotropic orbit. When cos cos =0 and sin sin =-1, prograde orbits are heliotropic orbits. 

Because of = sun- , conditions 0sunn  and 0  can guarantee that the values of  and  are 

both constant. Thus, we can obtain possible solutions of heliotropic frozen orbits by solving 0sunn  

and 0  for different cases. 

Case 1: cos cos =-1 and sin sin =0

In this case, constraints 0sunn  and 0  are expressed as 

 

22
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5cos 1 1 0.
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e

Wn i e C n
ee

  (15) 

When semi-major axis a and the spacecraft’s area-to-mass ratio  are given, we can obtain the values 
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of e and i for a heliotropic frozen orbit by solving Eqs. (15). Fig. 2a demonstrates the relationship 

between e and a for different area-to-mass ratios, and Fig. 2b demonstrates the relationship between i 

and a for different area-to-mass ratios. Notice that the shadow area in Fig. 2a denotes the orbits which 

may be effected by the atmosphere or collide with the Earth because their perigees are too close to the 

Earth or below the surface of the Earth. According to the results, we can divide the values of a into 

three segments, namly a<a1, a1 a a2, and a>a2. When a<a1, no heliotropic frozen orbit exists. When 

a1 a a2, the heliotropic frozen orbits have two branches A and B. These two branches share the same 

heliotropic frozen orbit at the boundary value a1. For branch A, e increases and i slowly decreases with 

the increasing a. For branch B, e decreases and i rapidly increases with the increasing a. When a>a2, 

branch B vanishes because the inclination cannot exceed 180 degrees, while branch A still exists. In 

addition, the boundary value a1 remarkably increases with the increasing area-to-mass ratio, while the 

boundary value a2 slowly increases with the increasing area-to-mass ratio. Thus, the second segment 

a1<a<a2 where two heliotropic frozen orbits exist become shorter with the increasing area-to-mass 

ratio. 

a.  b.  

Fig. 2. a. the relationship between e and a in Case 1; b. the relationship between i and a in Case 1. 

 e

 i/
[d

eg
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Case 2: cos cos =0 and sin sin =1

In this case, constraints 0sunn  and 0  are expressed as 

 
2 22
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2 22

cos 0,
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5cos 1 1 cos 0.
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sun
srp sun sun

sun
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ee
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  (16) 

Similar to Case 1, we obtain heliotropic frozen orbits by solving Eqs. (16). Fig. 3a and b describe the 

same relationships as Fig. 2a and b, respectively. According to the results, we can also divide the values 

of a into three segments, namly a<a1, a1 a a2, and a>a2. When a<a1, no heliotropic frozen orbit exists. 

When a1 a a2, the heliotropic frozen orbits also have two branches A and B, and the trends of two 

branches are the same with those in Fig. 2. When a>a2, branch B also vanishes, but branch A still exists. 

In this case, although the boundary value a1 remarkably increases with the increasing area-to-mass 

ratio, the boundary value a2 is almost invariable with the increasing area-to-mass ratio. 

a.  b.  

Fig. 3. a. the relationship between e and a in Case 2; b. the relationship between i and a in Case 2. 

Case 3: cos cos =0 and sin sin =-1 

In this case, constraints 0sunn  and 0  are expressed as 

 i/
[d

eg
]
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Similar to Case 1 and Case 2, we obtain heliotropic frozen orbits by solving Eqs. (17). Fig. 4a and b 

describe the same relationships as Fig. 2a and b, respectively. Different from the above two cases, the 

heliotropic frozen orbits never have two branches with the increasing semi-major axis. Fig. 4b 

demonstrates that the inclinations are all larger than 90 degrees. However, retrograde orbits are anti-

heliotropic orbits in this case. Thus, no heliotropic orbit exists in this case. 

a.  b.  

Fig. 4. a. the relationship between e and a in Case 3; b. the relationship between i and a in Case 3. 

In summary, we can obtain heliotropic frozen orbits in Case 1 and Case 2, but only anti-heliotropic 

frozen orbits in Case 3. In addition, all those frozen orbits are retrograde orbits. Because the heliotropic 

frozen orbits are solved by ignoring the obliquity angle of the ecliptic with respect to the equator, we 

call them nominal heliotropic frozen orbits. 

4. Controlled heliotropic frozen orbits 

4.1. Control strategy 

The nominal heliotropic frozen orbits cannot be naturally maintained when the obliquity angle of 
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the ecliptic with respect to the equator is considered. However, we discover that if the normal vector 

of the spacecraft’s sail is controlled in the equator plane, the spherical triangle in Fig. 1 will also 

degenerate into an arc on the equator. Then we can obtain =0 and = , and the change rates of e, i, , 

and  are simplified into 
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  (18) 

Here the normal vector of the spacecraft’s sail is no longer along the Earth-Sun line. Compared to Eqs. 

(13), Eqs. (18) include the effect of angle  on the orbital elements. To quantitatively describe the angle 

, we define two attitude angles  and . As shown in Fig. 5,  denotes the angle between the Earth-

Sun line and its projection on the equator, and  denotes the angle between the projection of the Earth-

Sun line on the equator and the normal vector of the spacecraft’s sail. Thus, the angles , , and  have 

the following relationship: 

 cos cos cos .  (19) 
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Fig. 5. Diagram of two attitude angles  and . 

Based on the conditions 0e  and 0i , we derive the same constraints as Eqs. (14) for variables 

 and . Thus, the eight groups feasible values of  and  in Table 1 can be also obtained. Because the 

relationship = sun-  is no longer satisfied, the constraint 0sunn  cannot naturally guarantee that 

the value of  is constant. To satisfy all conditions for heliotropic frozen orbits, we propose the 

following control strategy. As shown in Fig. 6, the diagram of the control strategy is divided into two 

parts. The upper part is used to choose a group of initial values satisfied for nominal heliotropic frozen 

orbits based on the simplified dynamical model, namely Eqs. (13). The lower part is used to adjust the 

values of the attitude angles and area-to-mass ratio to guarantee that the conditions for heliotropic 

frozen orbits are still satisfied under the full dynamical model, namely Eqs. (11). Three instructions 

are given to explain the lower part more clearly. First, the values of orbital elements and sun at the next 

moment T should serve as new references to determine the values of three control parameters. Second, 

when  is determined by solving 0 , another condition 0sunn  will be naturally satisfied. Third, 

the proposed control strategy is a continuous control process in theory. However, if the integral step 

for Eqs. (11) is set as a relatively large value, such as one day, the control strategy can be regarded as 

a discrete control process, which is more feasible in practical engineering. The key in the proposed 



15 

 

control strategy is to keep the value of  constant, which is impossible to be achieved in the discrete 

control process because the normal vector of sail surface cannot always keep up with the change of . 

To improve the accuracy of the discrete control, a simple trick is proposed here. As shown in Fig. 7, 

suppose that a control manipulation is implemented at t0, and the next control manipulation is 

implemented at t0+T. If we adjust the normal vector of sail surface (the dashed red arrow) to guarantee 

 equals  at t0,  will decrease to -nsunT at t0+T (  equals nsun), and the change range of  is ( -nsunT, 

). However, if we adjust the normal vector of sail surface (the solid red arrow) to guarantee  equals 

+ nsunT/2 at t0,  will decrease to -nsunT/2 at t0+T, and the change range of  turn out to be ( -nsunT/2, 

+nsunT/2). Obviously, this trick benefits for keeping  close to a wanted value, such as . In addition, 

when T is chosen as one day, the maximum deviation nsunT/2 equals about 0.5deg thanks to a small 

value of nsun. The deviation of  is so small that the heliotropic and frozen characteristics can be 

maintained for a long time, which is also verified in the following practical example. 
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Three control parameters
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Fig. 6. Diagram of the control strategy for heliotropic frozen orbits. 

n

Equator

Ascending node at t0+T

Ascending node at t0

nsunT

 

Fig. 7. The diagram of the trick in a discrete control process. 

4.2. Practical Examples 

Suppose that a solar sail spacecraft has a 25m×25m square sail and weighs 90kg, and the initial 

reflectivity coefficient of the sail is 1.8. Then, the initial effective area-to-mass ratio of this solar sail 

spacecraft is 0=12.5m2/kg. Suppose that this spacecraft is launched into a nominal heliotropic frozen 

orbit at the autumnal equinox of 2020, and the normal vector of sail surface points to the vernal equinox. 
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The initial values satisfied for the nominal heliotropic frozen orbits are chosen as a0= 10560.27km, 

e0= 0.1982, i0= 2.0455, 0=0, 0=0, M0=0, 0= , and sun0= . Then, we apply the proposed control 

strategy to this spacecraft and study its orbit in the next two years. 

In the first scenario, the integral step for Eqs. (11) is set as one second so that we can regard this 

control as a continuous control process. It is necessary to study whether the heliotropic and frozen 

characteristics are maintained by checking the values of four indicators: three orbital elements e, i, , 

and the characteristic angle . As shown in Fig. 8a, the values of e, i and  keep constant, which 

verifies the frozen characteristic of the orbit. In addition, the characteristic angle  is nearly equal to 

 (the slight error should be caused by numerical calculations), which verifies the heliotropic 

characteristic of the orbit. Besides, Fig. 8b, c, and d demonstrate the rules of the change of three control 

parameters, which turn out to be periodic oscillations with a one-year period. The maximum 

adjustment value of attitude angle  exactly equals the obliquity angle of the ecliptic with respect to 

the equator, and it always occurs at summer and winter solstices each year. Fig. 9 gives a quantitative 

description of the solar radiation acceleration on the solar sail spacecraft, and it shows that the 

magnitude of the acceleration is 10-5m/s2. Because the normal vector of sail surface is controlled in the 

Equator plane, the acceleration component along the z-axis of Sg always equals zero. The red and blue 

lines represent the acceleration components along x-axis and y-axis of Sg, respectively, and the black 

line represents the total value of solar radiation acceleration. They display period changes and the 

period is one year as well. 
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a  b  

c  d

Fig. 8. The rules of the change of four indicators and three control parameters in the first scenario. 

 

Fig. 9. The rules of the change of solar radiation acceleration in the first scenario. 

In the second scenario, the integral step for Eqs. (11) is set as one day so that we can regard this 

control as a discrete control process. As shown in Fig. 10a, four indicators no longer keep constant and 

have a slight deviation. In addition, the magnified figure of the beginning part demonstrates oscillation 
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change feature of these indicators, especially e and i. However, the magnitude of deviation is less than 

10-4, which can be ignored from the viewpoint of engineering. As shown in Fig. 10b, attitude angle  

has the same change rule with that in the first scenario. Notice that the average value of  is about 

0.5deg in this scenario, while 0 deg in the former scenario. This difference is caused by the trick 

proposed for discrete control, which requires that the adjustment of  is always nsunT/2 (about 0.5deg 

when T is chosen as one day) larger than that in a continuous control. The change of attitude angle  

is only determined by the motion of the Sun, resulting in the same rule with that in the former scenario. 

Because the deviations of four indicators are so slight that the change rules of effective area-to-mass 

ratio and SRP acceleration are almost the same with those in the former scenario. Here we do not repeat 

to plot their change rules. 

a.  b.  

Fig. 10. Changing rules of four indicators and attitude angle  in the second scenario. 

A spacecraft generally cannot be launched into a nominal heliotropic frozen orbit because of the 

injection error. In the third scenario, we choose the same initial values and control strategy with the 

second scenario, but injection errors a= 0.5km, e = 0.0005, i = 0.01deg,  = 0.01deg and  = 

0.01deg are added. Fig. 11a shows that the deviations of four indicators, especially , become larger 

than those in the second scenario. This means that heliotropic and frozen characteristics are influenced 
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by injection error, and the effect on heliotropic characteristic is more obvious. However, the magnitude 

of the largest deviation approaches 10-2, which is still tolerable in engineering. Because the deviation 

tendency of  is obvious, we can witness that there is a corresponding adjustment tendency of the 

average value of attitude angle  in Fig. 11b. In addition, the change rules of effective area-to-mass 

ratio and SRP acceleration are almost the same as those in the former scenarios. Here we do not repeat 

to plot their change rules. In summary, this scenario verifies the robustness of the controlled heliotropic 

frozen orbit. 

a.  b.  

Fig. 11. Changing rules of four indicators and attitude angle  in the third scenario. 

4.3. Applications 

Notice that the proposed heliotropic frozen orbits are medium earth orbits (MEO). Although low 

Earth orbits (LEO) and Geostationary Earth orbits (GEO) orbits are traditional venues for observations, 

MEO becomes attractive because of its potential to provide high spatial, temporal, and spectral 

resolution data [27]. The Jet Propulsion Laboratory (JPL) determined the optimal altitude for MEO 

observations as 10400km through numerous trade studies involving altitude, instrument complexity, 

coverage, radiation environment, coverage, spatial and temporal resolution, revisit time, data rates, 

data latency, downlink requirements, cost, and launch complexity [27]. Marco et al. [28] proposed 
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remote sensing application of Galileo constellation, through a bistatic Synthetic Aperture Radar system 

utilizing Galileo satellites on MEO as transmitters and Unmanned Aerial Systems as receives. 

Here we give a detailed study on the controlled heliotropic frozen orbit in the second scenario to 

investigate its advantages in remote sensing and communication service. First, the effects of the 

oblateness of Earth and SRP on the period of the heliotropic frozen orbit can be neglected. For the 

given semi-major axis, the orbital period is calculated as 2 3hT n , which indicates that this orbit 

is a regression orbit and the regression period is one day. The left picture in Fig. 12 shows the sub-

satellite point trajectory of the solar sail spacecraft. The trajectory begins to repeat after it flies around 

the Earth for 8 circles and can cover the area approximately from 60 degrees north altitude to 60 

degrees south altitude. Second, the condition 0sunn   actually ensures sun-synchronous 

characteristic, which indicates that the local time is always the same when the solar sail spacecraft 

passes the same latitude in the same direction. Third, the right picture of Fig. 12 shows the position of 

the heliotropic frozen orbit around the Earth. This orbit provides better coverage during daylight hours 

since, at the apogee, which is always oriented in the direction of the Sun, the solar sail spacecraft 

moves slower than at the perigee, which is always oriented away from the Sun. This effect is also 

strengthened by the exploitation of SRP that allows an increase in the eccentricity of the Sun-pointing 

apogee. In this scenario, the solar sail spacecraft spends 2 hours in daylight while 1 hour in the night. 

A regression orbit can provide high-efficient and accurate service for a certain site. Frozen 

characteristic benefits for reducing orbit maintenance because the variations of orbital elements are 

theoretically zero. Sun-synchronous characteristic not only makes it much convenient to interact with 

the ground sites but also benefits for continuous earth observation by visible remote sensing method. 

Heliotropic characteristic guarantees sufficient working time in daylight, during which visible remote 
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sensing can be used and human have more frequent requirements for communication service as well. 

  

Fig. 12. The sub-satellite point trajectory of the spacecraft and the position of the heliotropic frozen orbit. 

If we only change the condition  in Eqs. (12) into , a group of new frozen orbits 

can also be generated using the same control strategy. They no longer strictly have heliotropic 

characteristic but is still sun-synchronous. Suppose that a spacecraft with the initial value of 0 as 5deg 

namely  equals -5deg and other parameters the same with the former one is added in the second 

scenario. These two spacecraft have the same period,  and  , which can guarantee a natural 

formation flying between them. As shown in Fig. 13, the sub-satellite point trajectories of two 

spacecraft are parallel. They always pass through the same latitude together, and thus the connected 

line between them form a stable baseline for measurement. For example, two spacecraft in Fig. 13 can 

complete a mission of observing the Gulf of Mexico. Note that the distance between two spacecraft 

should be adjusted through setting the values of 0 according to the practical requirements. Because 

solar sail spacecraft can afford the weight of an imaging payload, such as the moderate resolution 

imaging spectroradiometer (MODIS) and synthetically thinned aperture radiometer, they can easily 

accomplish the above mission. However, as for smart dust, its small size require them a larger and 

complex configuration to compose a complete imaging instrument together for a remote sensing 

mission. In addition, to utilize the swarm intelligence advantage of smart dust, we propose the 
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following communication service design based on the controlled heliotropic frozen orbits. As shown 

in Fig. 14, we can achieve a wide coverage of the Earth by establishing a series of frozen orbits via 

setting different values of 0. It has been demonstrated that elliptical rings of spacecraft form wave-

like patterns which circulate around the elliptical ring, with peaks in density at the apogee [29]. Thus, 

each orbit can provide basic venues for a swarm of smart dust for telecommunications, achieving 

enhanced coverage on the day-side of the Earth. 

      

Fig. 13. Diagram of the mission of observing the Gulf of Mexico. 

  

Fig. 14. Wide coverage of the Earth through a series of frozen orbits. 

5. Conclusion

Aimed at high area-to-mass ratio spacecraft perturbed by J2 and SRP, this paper proposed novel 

heliotropic frozen orbits which can be maintained by adjusting the attitude angles and the area-to-mass 
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ratio of the spacecraft. We first establish the dynamical model, based on Lagrange planetary equations 

and the J2 and SRP disturbing functions. Through supposing the normal vector of the spacecraft’s sail 

is always along the Earth-Sun line and the obliquity angle of the ecliptic with respect to the equator is 

ignored, we can obtain a series of nominal heliotropic frozen orbits from the simplified dynamical 

equations. Because the nominal heliotropic frozen orbits cannot be naturally maintained with the 

consideration of the obliquity angle of the ecliptic with respect to the equator, we propose a control 

strategy to maintain the nominal heliotropic frozen orbits. This paper provides a detailed procedure of 

the control strategy, including how to determine the values of three control parameters. Although the 

control strategy is theoretically a continuous control process, it can be regarded as a discrete control 

by setting the integral step of dynamical equations as a great value, such as one day. 

Practical examples are provided to verify the heliotropic and frozen characteristics of the 

controlled orbits. Besides, the robustness of the controlled orbits for the injection error is also discussed 

by numerical simulations. Based on the proposed heliotropic frozen orbits, we can design orbits 

possessing regressive, frozen, Sun-synchronous and heliotropic characteristics at the same time. These 

advantages make heliotropic frozen orbits good options for Earth observation and communication 

service. However, there are still some practical issues worthy study, such as how to compose an 

imaging instrument by smart dust. 
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