Solar sail halo orbits designed in the Sun-Earth circular restricted three-body problem (CR3BP) provide inefficient reference orbits for station-keeping since the disturbance due to the eccentricity of the Earth’s orbit has to be compensated for. This paper presents a strategy to compute families of halo orbits around the collinear artificial equilibrium points in the Sun-Earth elliptic restricted three-body problem (ER3BP) for a solar sail with reflectivity control devices (RCDs). In this non-autonomous model, periodic halo orbits only exist when their periods are equal to integer multiples of one year. Here multi-revolution halo orbits with periods equal to integer multiples of one year are constructed in the CR3BP and then used as seeds to numerically continue the halo orbits in the ER3BP. The linear stability of the orbits is analyzed which shows that the in-plane motion is unstable while the out-of-plane motion is neutrally stable and a bifurcation is identified. Finally, station-keeping is performed which shows that a reference orbit designed in the ER3BP is significantly more efficient than that designed in the CR3BP, while the addition of RCDs improve station-keeping performance and robustness to uncertainty in the sail lightness number.
Families of halo orbits in the elliptic restricted three-body problem for a solar sail with reflectivity control devices
Biggs J. D.;
2020-01-01
Abstract
Solar sail halo orbits designed in the Sun-Earth circular restricted three-body problem (CR3BP) provide inefficient reference orbits for station-keeping since the disturbance due to the eccentricity of the Earth’s orbit has to be compensated for. This paper presents a strategy to compute families of halo orbits around the collinear artificial equilibrium points in the Sun-Earth elliptic restricted three-body problem (ER3BP) for a solar sail with reflectivity control devices (RCDs). In this non-autonomous model, periodic halo orbits only exist when their periods are equal to integer multiples of one year. Here multi-revolution halo orbits with periods equal to integer multiples of one year are constructed in the CR3BP and then used as seeds to numerically continue the halo orbits in the ER3BP. The linear stability of the orbits is analyzed which shows that the in-plane motion is unstable while the out-of-plane motion is neutrally stable and a bifurcation is identified. Finally, station-keeping is performed which shows that a reference orbit designed in the ER3BP is significantly more efficient than that designed in the CR3BP, while the addition of RCDs improve station-keeping performance and robustness to uncertainty in the sail lightness number.File | Dimensione | Formato | |
---|---|---|---|
HUANJ_OA_01-20.pdf
Open Access dal 18/10/2021
Descrizione: Paper Open Access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
HUANJ01-20.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
3.15 MB
Formato
Adobe PDF
|
3.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.