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Abstract

Solar sail halo orbits designed in the Sun-Earth circular restricted three-body

problem (CR3BP) provide inefficient reference orbits for station-keeping since

the disturbance due to the eccentricity of the Earth’s orbit has to be compen-

sated for. This paper presents a strategy to compute families of halo orbits

around the collinear artificial equilibrium points in the Sun-Earth elliptic re-

stricted three-body problem (ER3BP) for a solar sail with reflectivity control

devices (RCDs). In this non-autonomous model, periodic halo orbits only exist

when their periods are equal to integer multiples of one year. Here multi-

revolution halo orbits with periods equal to integer multiples of one year are

constructed in the CR3BP and then used as seeds to numerically continue the

halo orbits in the ER3BP. The linear stability of the orbits is analyzed which

shows that the in-plane motion is unstable while the out-of-plane motion is neu-

trally stable and a bifurcation is identified. Finally, station-keeping is performed

which shows that a reference orbit designed in the ER3BP is significantly more

efficient than that designed in the CR3BP, while the addition of RCDs improve

station-keeping performance and robustness to uncertainty in the sail lightness

number.
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1. Introduction

Halo orbits around the collinear equilibrium points are widely used in deep-

space missions due to their unique position for space weather observation and

communication with the Earth. Halo orbits around the equilibrium point L1 of

the Sun-Earth system are used for observing the solar wind or for global Earth

observation of the Sun-lit side, for example, ISEE-3, SOHO, WIND, Genesis and

LISA Pathfinder (Shirobokov et al., 2017). Halo orbits around the equilibrium

point L2 of the Sun-Earth system are useful for space-based observatories, such

as Herschel (ESA/NASA). Halo orbits around the equilibrium points L2 of the

Earth-Moon system can be used for observing the meteoroid impacts, such as

LUMIO (ESA) (Cipriano et al., 2018).

Station-keeping on halo orbits has utilized chemical propellant to generate

propulsion which limits the life-time of the mission. New types of propulsion

systems such as solar sail propulsion use solar radiation pressure (SRP) to gen-

erate continuous and unlimited propulsion, which could significantly extend the

life-time of deep-space missions. In addition, solar sails can enable an infinite

number of artificial equilibrium points (AEPs) which are displaced from the tra-

ditional Lagrange points, as well as artificial halo orbits (AHOs) around these

AEPs. Solar sails also enable the trajectories with reversal orbital angular mo-

mentum, called “H -reversal trajectories” (Zeng et al., 2019). These orbits have

significant potential to extend the range of applications beyond that of tradi-

tional spacecraft (Gong and Macdonald, 2019). The design and computation of

AHOs in the circular restricted three-body problem (CR3BP) and their appli-

cations have been addressed widely (Richardson, 1980a,c; Baoyin and Mcinnes,

2006; McInnes, 2000; Farrés and Jorba, 2010; Verrier et al., 2014; Heiligers et al.,

2016; Waters and McInnes, 2007; Yuan et al., 2018; Dei Tos and Topputo, 2017).

However, these orbits, despite giving insight into mission design of solar sails
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applications, are not suitable for use as reference orbits for station-keeping as

the disturbance due to eccentricity of the primaries orbits has to be compen-

sated for. The eccentricity is the most significant perturbation in the Sun-Earth

CR3BP (Richardson, 1980b). Moreover, a solar sail can only produce a small

force and the attitude variation rates are slow. This limits their station-keeping

capability and it is necessary to design reference orbits in higher-fidelity models.

In order to incorporate the effect of eccentricity and to design efficient

station-keeping reference orbits, the solar sail elliptic restricted three-body prob-

lem (SSER3BP) should be considered. However, the challenge here is that the

equations of motion of the elliptic restricted three-body problem (ER3BP) are

non-autonomous since the true anomaly f varies with time. Therefore, periodic

orbits in the Sun-Earth ER3BP only exist when their periods are equal to inte-

ger multiples of one year (Broucke, 1969). Periodic orbits in the classic ER3BP

were investigated by Broucke (1969),Campagnola et al. (2008) and Hou and

Liu (2011). In these papers, only isolated periodic orbits exist due to the con-

straint on the period, which prevents the numerical continuation of halo orbits

with varying period. However, by utilizing SRP it is possible to obtain families

of periodic orbit in the SSER3BP with fixed periods by varying the lightness

number of solar sail.

Gong and Li (2015b) generated the out-of-plane periodic orbits in the SSER3BP

by adjusting the sail angles together with the out-of-plane position to satisfy the

equilibrium equations. Biggs et al. (2008, 2009) and Farrés and Jorba (2011)

investigated one-year periodic orbits in the SSER3BP. Biggs et al. (2008, 2009)

computed a one-year out-of-plane orbit in the solar sail CR3BP (SSCR3BP)

and used this as a seed to numerically continue periodic orbits in the SSER3BP.

Farrés and Jorba (2011) viewed the AEP in the SSCR3BP as a one-year peri-

odic orbit in the inertial frame, which was used as a seed to generate families of

periodic orbits in the SSER3BP using numerical continuation. However, solar

sail AHOs around the collinear AEPs in the SSER3BP have not been inves-

tigated. In this paper, a strategy to generate families of AHOs around the

collinear AEPs in the Sun-Earth SSER3BP is proposed. This approach is dif-
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ferent from those discussed by Biggs et al. (2008, 2009) and Farrés and Jorba

(2011) in which the one-year orbits in the SSCR3BP are used as seeds in a nu-

merical continuation scheme. In this paper a wider class of AHOs with periods

equal to fractions of one year are used as seeds and then numerically continued

to yield multi-revolution AHOs whose periods equal integer multiples of one

year. These AHOs are denoted as multi-revolution AHOs, as they wind around

multiple times before coming back to exactly the same position. These multi-

revolution AHOs are natural solutions to the SSER3BP and provide efficient

reference orbits for station-keeping.

In this paper, reflectivity control devices (RCDs) are also used to control

the magnitude of SRP of the sail without changing its attitude. This technol-

ogy has been demonstrated as an attitude control actuation system for JAXA’s

small solar power sail demonstrator “IKAROS” (Funase et al., 2011). RCDs can

switch the reflection properties from one state to another state. Two reflectivity

modulation modes are possible, (i) the diffusion mode and (ii) the absorption

mode. The diffusion mode can switch between specular reflection and diffusion,

as demonstrated on “IKAROS” (Funase et al., 2011). The absorption mode

switches between specular reflection and absorption. Aliasi et al. (2013) stabi-

lized the AEPs using an absorption mode RCD solar sail with a fixed attitude.

Gong and Li (2015a) investigated the equilibria in a Sun-asteroid system also

using the absorption mode RCD solar sail. Lou et al. (2016) proposed an active

disturbance rejection station-keeping control about equilibrium point orbits for

an RCD solar sail using the same model as Gong and Li (2015a). Yuan et al.

(2018) presented the families of Lyapunov and halo orbits in the SSCR3BP for

an RCD solar sail. Coupled orbit and attitude control approaches for RCD solar

sails were proposed by Mu et al. (2015) and Biggs and Negri (2019). RCDs have

also been proposed to obtain the smart dust trajectory control in a heliocentric

mission scenario (Mengali and Quarta, 2016; Mengali et al., 2018; Niccolai et al.,

2019). In this paper, a more general and realistic model of the diffusion mode

RCD solar sail is used which considers specular reflection, absorption, diffusion,

and emission.
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The linear stability of the orbits is analyzed, showing that the in-plane mo-

tion is unstable while the out-of-plane motion is neutrally stable and a bifur-

cation is identified. Station-keeping is then undertaken for a normal solar sail

and for an RCD solar sail based on an application of LQR control. The ref-

erence orbits are chosen from the generated families of multi-revolution AHOs.

Simulations are undertaken to compare and analyze the station-keeping perfor-

mances. The results show that a reference orbit designed in the SSER3BP is

significantly more efficient for station-keeping than a reference orbit designed

in the SSCR3BP. In addition, the inclusion of RCD technology is shown to

improve the station-keeping performance and provide additional robustness to

uncertainty in the sail lightness number.

2. Elliptic three-body problem for RCD solar sail

2.1. Equations of motion for the SSER3BP

The non-dimensional equations of motion of the SSER3BP are expressed in

a pulsating-rotating frame (Szebehely, 1967; Biggs et al., 2008)

x′′ − 2y′ = 1
1+e cos f

(
x− 1−μ

r31
(x+ μ)− μ

r32
(x− 1 + μ) + ax

)
y′′ + 2x′ = 1

1+e cos f

(
y − 1−μ

r31
y − μ

r32
y + ay

)
z′′ = 1

1+e cos f

(
−ze cos f − 1−μ

r31
z − μ

r32
z + az

) (1)

where the true anomaly f is the independent variable and the prime (·)′ de-
notes the derivative with respect to f. x = X/R12, y = Y/R12, z = Z/R12

are the non-dimensionalized position coordinates with respect to the Sun-Earth

barycenter, where X, Y and Z are the dimensional position coordinates and

R12 is the time-varying distance between the two primaries. e is the eccen-

tricity. r1 and r2 are the distances from the solar sail to the first and the

second primary, respectively, which are given by r1 =

√
(x+ μ)

2
+ y2 + z2 and

r2 =

√
(x− 1 + μ)

2
+ y2 + z2. ax, ay and az are the solar radiation acceleration

components. μ is the ratio of the smaller primary mass to the total mass of the

two primaries, which for the Sun-Earth system is, μ = 3.04× 10−6.
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Eq. (1) can be expressed in the following vectorial form

r′′ + 2ω × r′ =
1

1 + e cos f

(
∂U

∂r
+ a

)
(2)

where r = [x, y, z]T , ω = [0, 0, 1]T , a = [ax, ay, az]
T . The potential function U

is defined by the equation

U =

[
1

2
(x2 + y2 − z2e cos f) +

1− μ

r1
+

μ

r2

]
(3)

2.2. Force model of RCD solar sail

When a solar photon intersects the solar sail surface, it can be either re-

flected, absorbed or transmitted. The probability for each of these events are

denoted by ρr, ρa and ρt, respectively where:

ρr + ρa + ρt = 1 (4)

where ρr can be further divided into two parts ρr = ρs + ρd, where ρs and ρd

denote the probability for specular reflection and diffusion, respectively. Usually,

the transmission can be neglected. Therefore, Eq. 4 can be expressed as

ρa + ρs + ρd = 1 (5)

The total solar radiation acceleration, which is non-dimensionalized by the

same transformation as the equations of motion, can be written as (McInnes,

1999; Fu et al., 2016)

a =
1

2
β
1− μ

r21
(s · n)

[
(1− ρs)s+

(
2ρs (s · n) + ρdBf + ρa

εfBf − εbBb

εf + εb

)
n

]
(6)

where n and s are the unit vectors of the sail normal and the Sun-sail line,

respectively; β is the lightness number; εf and εb are the front and back emis-

sivities; Bf and Bb are the front and back non-Lambertian coefficients. For

simplicity, we express Eq. (6) as

a = β
1− μ

r21
(Ms+Nn) (7)
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where

M = 1
2 (s · n) (1− ρs)

N = 1
2 (s · n)

(
2ρs (s · n) + ρdBf + ρa

εfBf−εbBb

εf+εb

) (8)

An RCD can switch its reflection properties from one state to another state.

In this paper, the diffusion mode RCD is considered, which can switch between

a specular state and a diffusive state. The parameters in McInnes (1999) are

used for the specular state, ρa = 0.12, ρs1 = 0.8272, ρd1 = 0.0528, εf = 0.05,

εb = 0.55, Bf = 0.79, Bb = 0.55. For the diffusive state, it is assumed that

all specular reflection transforms to diffusion, that is ρs2 = 0, ρd2 = 0.88. The

reflection properties of the RCD in the specular state are assumed to be the

same as that of the sail surface without RCDs. We define the RCD ratio σ as

the ratio of the area in the diffusive state to the total sail area. The total solar

radiation acceleration consists of the following two parts:

a = a1 + a2 (9)

a1 = β (1− σ)
1− μ

r21
(M1s+N1n) (10)

a2 = βσ
1− μ

r21
(M2s+N2n) (11)

where the subscript 1 of a, M and N denotes the specular state, and the sub-

script 2 denotes the diffusive state. Note that the magnitude and direction of

the solar radiation acceleration can be physically adjusted by changing σ. In

this paper, we assume that 10% of the sail surface is equipped with RCDs, that

is, the range of σ is 0 ≤ σ ≤ 0.1.

In order to express the solar radiation acceleration in the pulsating rotating

frame, two sail angles are used to describe the orientation of the sail. There are

two definitions of the sail angles in the literature. The first definition uses the

cone angle and clock angle (McInnes, 1999; Gong et al., 2014) while the second

definition uses the pitch angle and azimuth angle (Biggs et al., 2009; Biggs and

McInnes, 2009). However, the first definition has a drawback that when the
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cone angle is zero, the clock angle has no influence on the sail acceleration.

Therefore, the pitch angle γ and the azimuth angle δ are used in this paper.

Fig. 1 shows the definition of these two angles, where x, y, z are the axes of the

pulsating rotating frame. γ is defined as the angle between the sail-normal and

the x -y plane, while δ is defined as the angle between the projection of the sail

normal in the x -y plane and the x -axis.

z

x

y
n

Sun
Earth

s

Figure 1: Definition of sail angles

The components of n in the pulsating rotating frame are

n = [cos γ cos δ, cos γ sin δ, sin γ]T (12)

2.3. Equations of motion for reference orbit

For the reference orbit design, the sail normal is considered to be orientated

along the Sun-sail line, and the corresponding sail parameters are called the

nominal sail parameters, which are denoted by a subscript e. In this case, Eq.

(9) can be expressed as

a = βKe
1− μ

r21
ne (13)

where

ne = s = [x+ μ, y, z]
T
/
r1 (14)

Ke = (1− σe)K1 + σeK2 (15)
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K1 =
1

2

(
1+ ρs1 + ρd1Bf + ρa

εfBf − εbBb

εf + εb

)
(16)

K2 =
1

2

(
1+ ρs2 + ρd2Bf + ρa

εfBf − εbBb

εf + εb

)
(17)

σe is set to 0.05, i.e., half of RCDs are in the specular state while the other

half are in the diffusive state. Substituting Eq. (14) into Eq. (12), the nominal

sail angles can be solved by

γe = arcsin
(

z
r1

)
δe = arctan

(
y

x+μ

) (18)

Substituting Eq. (13) into Eq. (1), the equations of motion are transformed to

x′′ − 2y′ = 1
1+e cos f

(
x− (1−μ)(1−βKe)

r31
(x+ μ)− μ

r32
(x− 1 + μ)

)
y′′ + 2x′ = 1

1+e cos f

(
y − (1−μ)(1−βKe)

r31
y − μ

r32
y
)

z′′ = 1
1+e cos f

(
−ze cos f − (1−μ)(1−βKe)

r31
z − μ

r32
z
) (19)

The vectorial form of Eq. (19) is

r′′ + 2ω × r′ =
1

1 + e cos f

∂Ū

∂r
(20)

where

Ū =

[
1

2
(x2 + y2 − z2e cos f) +

(1− μ) (1− βKe)

r1
+

μ

r2

]
(21)

It can be seen from the third equation of Eq. (19) that the AEPs only exist

in the x -y plane due to the term cos f . In this paper, we focus on the collinear

AEPs (L1, L2, and L3), which can be obtained by setting x′′ = y′′ = z′′ = x′ =

y′ = y = z = 0 in Eq. (19) and then solving for x. According to Eq. (19),

the collinear AEPs in the SSER3BP are the same as those in the SSCR3BP.

Fig. 2 shows the 3 collinear AEPs with β changing from 0 to 0.5. The AEPs

shift towards the Sun with increasing β. The families of AHOs in this paper are

around these AEPs.
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A
U

) 
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1.005

1.01
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 (

A
U

) 

0 0.1 0.2 0.3 0.4 0.5
-1

-0.9

-0.8

L3
 (

A
U

) 

Figure 2: The x -coordinate of the collinear AEPs for varying β

3. A strategy for generating families of AHOs in the SSER3BP

3.1. Procedure for generating AHOs

Since the ER3BP is non-autonomous, any periodic orbit must have a period

equal to an integer multiple of one year, i.e. 2nπ (Broucke, 1969; Hou and Liu,

2011; Campagnola et al., 2008), where n is an arbitrary positive integer and

2π is the non-dimensional time corresponding to one year. The procedure to

generate AHOs in the SSER3BP is to numerically continue them from an AHO

computed initially in the SSCR3BP. However, the periods of AHOs around the

collinear L1 and L2 AEPs in the Sun-Earth SSCR3BP are always less than 2π,

and thus it is not possible to find a qualified seed orbit from the classic AHOs

around the collinear L1 and L2 AEPs in the Sun-Earth SSCR3BP. However, an

infinite number of AHOs with periods equal to fractions of one year, i.e. 2nπ/m,

where m is an arbitrary positive integer, can be used to construct m-revolution

AHOs whose periods equal 2nπ by computing single-revolution AHOs for m

periods. These m-revolution AHOs are then used as seeds to compute AHOs

in the SSER3BP using numerical continuation, with the eccentricity and the

lightness number used as the continuation parameters.

This procedure is explained in detail in sub-sections 3.2 to 3.5.

3.2. A modified 3rd order approximation for the SSCR3BP

Richardson (1980a,c) proposed a 3rd order solution to approximate halo
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orbits around the collinear Lagrange points for the classical CR3BP. McInnes

(2000) extended Richardson’s method to the SSCR3BP for a perfectly reflecting

solar sail. In this paper, we extend McInnes’ method to the case of a non-

perfectly reflecting RCD solar sail. This enables an initial guess to compute an

initial single-revolution AHO in the SSCR3BP with period 2nπ/m.

Recall Richardson’s 3rd order halo orbit approximation. If the Lagrangian

for the motion of a spacecraft relative to the collinear equilibrium points can be

expressed by a Legendre polynomial as

L =
1

2
(ρ′ · ρ′) +

∞∑
n=2

cnρ
nPn(x/ρ) (22)

The 3rd order solution for periodic motion near the collinear equilibrium points

can be found to be

x̃ = a21A
2
x + a22A

2
z −Ax cos τ1 + (a23A

2
x + a24A

2
z) cos 2τ1 + (a31A

3
x − a32AxA

2
z) cos 3τ1

ỹ = kAx sin τ1 + (b21A
2
x − b22A

2
z) sin 2τ1 + (b31A

3
x − b32AxA

2
z) sin 3τ1

z̃ = δnAz cos τ1 + δnd21AxAz(cos 2τ1 − 3) + δn(d32AzA
2
x − d31A

3
z) cos 3τ1

(23)

where x̃, ỹ, z̃ are the position coordinates relative to the equilibrium points. Ax

and Az are the amplitudes in the x -direction and the z -direction, respectively.

The definition of the other parameters can be found in Richardson (1980a).

McInnes (2000) transformed the Lagrangian for the motion of a perfectly

reflecting solar sail around the collinear AEPs into the Legendre polynomial

in Eq. (22). In this paper, based on McInnes (2000), the Lagrangian for the

motion of RCD solar sail around the collinear AEPs is transformed into the

Legendre polynomial in Eq. (22). The RCD solar sail model in Eq.(13) is used

in an analogous way to derive the Lagrangian

L = 1
2 (ρ

′ · ρ′) + (1− μ) (1− βKe)
(

1
|r1−ρ| − r1·ρ

|r1|3
)
+ μ

(
1

|r2−ρ| − r2·ρ
|r2|3

)
= 1

2 (ρ
′ · ρ′) +

∞∑
n=2

cnρ
nPn(x/ρ)

(24)
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where

cn =

[
(−1)n(1− μ)(1− βKe)

(1− γL)
n+1 +

μ

γn+1
L

]
, (for L1) (25)

cn =

[
(−1)n(1− μ)(1− βKe)

(1 + γL)
n+1 +

(−1)nμ
γn+1
L

]
, (for L2) (26)

cn =

[
(1− μ)(1− βKe)

γn+1
L

+
μ

(1 + γL)
n+1

]
, (for L3) (27)

where Ke is the nominal K given in Eq. (15), γL is the ratio of the distance

between the AEPs and the nearest primary to the distance between the pri-

maries. For a perfectly reflecting solar sail, i.e. Ke = 1, Eq. (24) reduces to the

Lagrangian in McInnes (2000).

The new coefficients obtained by Eq. (25–27) can be substituted into the

expressions in Appendix I of Richardson (1980a) or Appendix B of McInnes

(2000) to obtain the approximate solutions for periodic AHOs near the collinear

AEPs.

3.3. Period of AHOs in the SSCR3BP

The initial goal is to compute AHOs with period 2nπ/m in the SSCR3BP.

In the 3rd order approximation, the non-dimensional period T ∗ is given by

T ∗ = 2π/λ (28)

λ4 + (c2 − 2)λ2 − (c2 − 1)(1 + 2c2) = 0 (29)

However, the non-dimensionalization for T ∗ is not the same as that in the

SSCR3BP where the time is non-dimensionalized by τ = n1t (t is the dimen-

sional time and n1 is the mean angular velocity of the Sun-Earth system) so

that 2π corresponds to one year. Therefore, it is required to transform T ∗ to T

12



which is the period non-dimensionalized as same as that in the SSCR3BP, that

is

T = T ∗/ω (30)

ω = 1 + ω1 + ω2 (31)

ω1 = 0, ω2=s1A
2
x + s2A

2
z (32)

where the coefficients s1 and s2 can be found in Richardson (1980a). T depends

on both β and Az. Fig. 3 shows the period T of the Sun-Earth L1 AHOs with

respect to β and Az. The results in the cases of L2 and L3 can be obtained in

the same way. It can be seen that, the periods T are always less than 2π, i.e.

T = 2nπ/m < 2π. Thus, m must be larger than 1, that is, only multi-revolution

L1 AHOs exist in the Sun-Earth SSER3BP.

Figure 3: Period T of L1 AHOs with respect to β and Az

3.4. Differential Correction of the analytical approximation

Although the 3rd order solution provides an initial guess for integrating

the nonlinear equation of motion, it is not accurate enough to obtain a closed

periodic orbit in the full non-linear dynamics. Therefore, a differential correction

is required. For an AHO with period T, it perpendicularly crosses the x -z plane
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at t = 0 and t = T/2. The initial state is set as

X(0) = [x0, 0, z0, 0, Vy0, 0]T (33)

The state at t = T/2 can be obtained by integrating

X(T/2) = [xT/2, δy, zT/2, δVx, Vy,T/2, δVz]
T (34)

where δy, δVx and δVz are the errors in y, Vx and Vz at t = T/2 which can be

used to correct the initial values for x0, z0 and Vy0 by the following formula

⎡
⎢⎢⎢⎣

δy

δVx

δVz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ΦT/2(2, 1) ΦT/2(2, 3) ΦT/2(2, 5)

ΦT/2(4, 1) ΦT/2(4, 3) ΦT/2(4, 5)

ΦT/2(6, 1) ΦT/2(6, 3) ΦT/2(6, 5)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

δx0

δz0

δVy0

⎤
⎥⎥⎥⎦ (35)

where ΦT/2 is the state-transition matrix from t = 0 to t = T/2. This process

is repeated until the values for δy, δVx, δVz are smaller than a given tolerance

ε.

3.5. Numerical results: families of AHOs in the SSER3BP

The families of AHOs in the SSER3BP can be generated using a numerical

continuation method. For a fixed step continuation (Heiligers et al., 2016; Yuan

et al., 2018; Biggs et al., 2008), the increment of the continuation parameter

is constant, which needs to be very small to avoid diverging and leads to very

long computation time. In this section, a variable step numerical continuation

is provided which significantly reduce the computation time.

It is known that if the increment of the continuation parameter is too large,

the differential correction may not converge, or it will require a large amount

of iterations to converge. Therefore, if the number of iterations is large, it

implies that the increment of the continuation parameter should be reduced;

while if the number of iterations is small, it implies that the increment of the

continuation parameter can be increased. As illustrated in Fig. 4, i is the

number of iterations of the differential correction, and δa is the increment of
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the continuation parameter a. If i < i1, δa would be increased (k1 > 1) in

the next step; else if i > i2, δa would be decreased (k2 < 1); else, δa would

keep unchanged. i1 and i2 are two threshold parameters chosen by trial, in this

paper, i1 = 5 and i2 = 10.

start differential
correction error < ε yes

no
i < i1

i > i2

else

δa=k1δa

δa=k2δa

a= a+δa

a = a+δai = i+1

stop
condition stop

yes

no

yes

yes

yes

Figure 4: Variable step numerical continuation

There are two families of AHOs in the SSER3BP emanating from each AHO

in the SSCR3BP (Campagnola et al., 2008; Hou and Liu, 2011). If m is odd, the

two families are called the periapsis family and apoapsis family, depending on

whether the first perpendicular crossing occurs when the Earth is at the periapse

(f(0) = 0) or at the apoapse (f(0) = π). In this case, the two perpendicular

crossing points are at two sides of the orbit (see the red dots in Fig. 5). If m

is even, the two families are called the left family and right family, depending

on whether the first perpendicular crossing occurs at the left apse or the right

apse in the x-y plane. In this case, the two perpendicular crossing points are at

the same side of the orbit (see the red dots in Fig. 6).

The results of two families of the L1 AHOs in the Sun-Earth SSER3BP are

given as examples. One is the left family of 2-revolution southern AHOs with

period 2π as shown in Fig. 7. Another is the periapsis family of 3-revolution

southern AHOs with period 4π as shown in Fig. 8. The other families can be

obtained in the same way. Note that these families consist of the AHOs with

the same period T = 2nπ, the same number of revolutions m and the same

eccentricity e=0.0167, but different β and amplitude, which are different from

the families in the classical CR3BP or ER3BP.
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(a) f(0) = 0 (b) f(0) = π

Figure 5: Two 3-revolution orbits in the SSER3BP with period 4π emanating from the same

single-revolution orbit in the SSCR3BP with period 4π/3

(a) Left crossing (b) Right crossing

Figure 6: Two 2-revolution orbits in the SSER3BP with period 2π emanating from the same

single-revolution orbit in the SSCR3BP with period π
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Figure 7: The left family of 2-revolution southern L1 AHOs with period 2π
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Figure 8: The periapsis family of 3-revolution southern L1 AHOs with period 4π

4. Stability analysis

The linear stability of periodic orbits can be deduced by computing the

eigenvalues of the monodromy matrix M = Φ(T, t0), where Φ(T, t0) is the

state transition matrix for one period. A periodic orbit is stable if all the

eigenvalues are on the unit circle. The stability analysis in this section involves

to the families of AHOs in section 3.5.

In these cases, there are 3 pairs of eigenvalues. The first pair consists of

two conjugate complex eigenvalues. The second pair consists of two reciprocal

real eigenvalues and the third pair comes from the unit eigenvalue λ = 1 in the

CR3BP. Due to the eccentricity, the unit eigenvalues move onto either the real

axis or the unit circle in the ER3BP (Broucke, 1969; Campagnola et al., 2008).

However, since the eccentricity here is very small, the third pair of eigenvalues

are always in the vicinity of the point (1, 0i) which are called here the quasi-unit

eigenvalues. Fig. 9 shows the variations of the 3 pairs of eigenvalues with the

orbit amplitude increasing.

The out-of-plane motion depends on the pair of complex eigenvalues (the

red arrows in Fig. 9). As shown in Fig. 9, as the amplitude increases, this

pair of eigenvalues moves from the point (1, 0i) along the unit circle in opposite

directions, and finally return to the point (1, 0i). When they cross the real axis

at the point (-1, 0i), a bifurcation occurs. This bifurcation changes the nature of

the families of 3-revolution AHOs, that is, before the bifurcation, β decreases as

the amplitude Az increases, while after the bifurcation it increases with Az (see

Fig. 10b). However, for the families of 2-revolution AHOs, β always increases

17



with Az (see Fig. 10a). Since this pair of eigenvalues is always on the unit

circle, it can be inferred that the out-of-plane motion is neutrally stable.

Im

Re
(0,0i) (1,0i)

(0,1i)

(a)

Im

Re
(0,0i) (1,0i)

(0,1i)

(b)

Im

Re
(0,0i) (1,0i)

(0,1i)

(c)

Figure 9: The variations of the 3 pairs of eigenvalues with increasing orbit amplitude. a) the

left family of the 2-revolution AHOs; b) the right family of the 2-revolution AHOs; c) the

periapsis family and the apoapsis family of the 3-revolution AHOs
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Bifurcation

(b)

Figure 10: The relationship between β and Az . a): families of 2-revolution AHOs; b) families

of 3-revolution AHOs

The in-plane motion depends on the pair of real eigenvalues (the green arrows

in Fig. 9) and the pair of quasi-unit eigenvalues (the blue arrows in Fig. 9).

However, the quasi-unit eigenvalues are always in the vicinity of the point (1,

0i) and the deviation is smaller than 0.01, while the real eigenvalues are far

from the unit circle. Therefore, the in-plane motion mainly depends on the real

eigenvalues.

As shown in Fig. 9, as the orbit amplitude increases, the pair of real eigen-

values move towards the point (1, 0i) from two sides. We introduce the stability
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index defined by Howell (1984), that is

υ = (λ+ 1/λ) /2 (36)

where λ and 1/λ are the pair of real eigenvalues. The smaller υ is, the more

stable the orbit is. Fig. 11 illustrates υ with respect to the amplitude Az. It

can be seen that υ decreases as the amplitude Az increases, that is, the bigger

the amplitude is, the more stable the orbit is. However, υ is always larger than

1, which means the in-plane motion is always unstable.

(a) (b)

Figure 11: The relationship between υ and Az . a): families of 2-revolution AHOs; b) families

of 3-revolution AHOs

Simulations are used to verify the stability analysis above. An injection error

of 150km in position and 0.03m/s in velocity is considered. Two orbits with

Az = 0.002 (orbit 1) and Az = 0.009 (orbit 2) are chosen from the 3-revolution

family. The stability indices υ are 5.3 × 107 and 1.2 × 106, respectively. The

orbits are simulated for one revolution (T = 4π/3).

Fig. 12 and Fig. 13 show the position errors and velocity errors of orbit 1

and orbit 2, respectively, where a)–f) are the cases for which the error is added

to the initial position components x0, y0, z0 and the initial velocity components

Vx0, Vy0, Vz0, respectively. It can be seen that the motion in the x-y plane

diverges with time, while the motion along the z-axis (out-of-plane) oscillates

in the vicinity of zero, which is consistent with the features of the eigenvalues

mentioned above. It is also shown that the bigger υ is, the faster the in-plane
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motion diverges.
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Figure 12: Position errors and velocity errors of orbit 1 (υ = 5.3 × 107). a)–f) are the cases

with errors in the x0, y0, z0 , Vx0, Vy0 and Vz0, respectively
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Figure 13: Position errors and velocity errors of orbit 2 (υ = 1.2 × 106). a)–f) are the cases

with errors in the x0, y0, z0 , Vx0, Vy0 and Vz0, respectively
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5. Station keeping

The families of multi-revolution AHOs in section 3 are unstable. Therefore,

station-keeping is required. The periodic AHOs in section 3 are used as the

reference orbits in this section.

5.1. Linear model for control

In this section, the classical LQR (Kirk, 2004) method is used to design the

control law. The linearized model with respect to the reference orbit is expressed

as the form of state space equation.

Ẋ = AX +Bu (37)

where the state vector X = [Δx, Δy, Δz, ΔVx, ΔVy, ΔVz]
T is the deviation

of positions and velocities relative to the reference orbit Γ . A and B are given

by

A =

⎡
⎢⎣ 03×3 I3×3

1
1+e cos f

∂2Ū
∂r∂r

∣∣∣X=Γ
u=ue

Ω

⎤
⎥⎦ (38)

Ω =

⎡
⎢⎢⎢⎣

0 2 0

−2 0 0

0 0 0

⎤
⎥⎥⎥⎦ (39)

B =

⎡
⎢⎣ 03×3

1
1+e cos f

∂a
∂u

∣∣∣X=Γ
u=ue

⎤
⎥⎦ (40)

For a normal solar sail, the control vector u = [Δγ, Δδ]T is the deviation of

the sail angles relative to the nominal values. For an RCD solar sail, u =

[Δγ, Δδ, Δσ]T , where Δσ is the deviation of σ relative to the nominal value.
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The partial derivatives in Eq. (40) are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂a
∂σ = β (K2 −K1)

1−μ
r21

n

∂a
∂γ = β 1−μ

r21

[
(1− σe)

(
∂M1

∂γ s+ ∂N1

∂γ n+ ∂n
∂γ N1

)
+ σe

(
∂M2

∂γ s+ ∂N2

∂γ n+ ∂n
∂γ N2

)]
∂a
∂δ = β 1−μ

r21

[
(1− σe)

(
∂M1

∂δ s+ ∂N1

∂δ n+ ∂n
∂δ N1

)
+ σe

(
∂M2

∂δ s+ ∂N2

∂δ n+ ∂n
∂δ N2

)]
(41)

where

∂Mi

∂γ = 1
2

(
s · ∂n∂γ

)
(1− ρsi), i= 1, 2

∂Mi

∂δ = 1
2

(
s · ∂n∂δ

)
(1− ρsi), i= 1, 2

∂Ni

∂γ = 1
2

(
s · ∂n∂γ

)(
4ρsi (s · n) + ρdiBf + ρa

εfBf−εbBb

εf+εb

)
, i= 1, 2

∂Ni

∂δ = 1
2

(
s · ∂n∂δ

) (
4ρsi (s · n) + ρdiBf + ρa

εfBf−εbBb

εf+εb

)
, i= 1, 2

∂n
∂γ = [− sin γe cos δe, − sin γe sin δe, cos γe]

T

∂n
∂δ = [− cos γe sin δe, cos γe cos δe, sin γe]

T

(42)

5.2. Simulation and Analysis

In this section, simulations are undertaken to analyze the control perfor-

mance in 3 cases, in which the influence of the eccentricity (case 1), injection

errors (case 2), and an error in β (case 3) is investigated respectively. In re-

ality, an error in β is inevitable as it depends on many factors such as the

characteristics of the material, the temperature, etc.. In each case, the control

performances of the normal solar sail and the RCD sail are compared.

The simulation results depend on several factors: i) the chosen reference

orbit; ii) the values for the errors; iii) the maximum RCD ratio, which is relevant

to the maximum available control acceleration; iv) the control parameters, i.e.

the weight matrices Q and R for LQR. In this paper, the reference orbit is

chosen randomly from the families of orbits in Section 3. The injection error

and the error in β are set to medium values for effective station-keeping. The

maximum RCD ratio is chosen by referring to “IKAROS”. The Q and R are

tuned by trial and error.
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5.2.1. Case 1: influence of eccentricity

In this case, a periodic AHO designed in the SSCR3BP with amplitude

Az = 0.009 and lightness number β = 0.0276 is chosen to be the reference orbit

while the equations of motion of the SSER3BP are considered. Fig. 14a and

Fig. 14b show the results for the cases of the normal solar sail and the RCD

solar sail, respectively. The errors diverge in both cases. Δσ is always equal to

its maximum value. We have tried to adjust the weight matrices Q and R, but

we cannot obtain stable results. If the whole solar sail surface is equipped with

RCDs and the nominal σe = 0.5, i.e. the maximum value for Δσ is 0.5, the

results are shown in Fig. 14c. Although the errors do not diverge, the maximum

steady-state position error reaches 1020 km. Therefore, the results in Fig. 14

imply that the influence of eccentricity yields poor station-keeping performance.

5.2.2. Case 2: influence of injection error

In this case, the reference orbit designed in the SSER3BP is chosen from the

family of 3-revolution AHOs in section 3, with amplitude Az = 0.009, lightness

number β = 0.0276 and stability index υ = 1.2 × 106. An injection error of

150km in position and 0.03m/s in velocity is taken into account. Fig. 15a and

Fig. 15b show the results in the cases of the normal solar sail and the RCD

solar sail, respectively. The steady-state errors in the two cases are nearly equal.

However, the convergence rate of the normal solar sail is obviously slower than

that of the RCD solar sail. The convergence time when the positions errors

reach within a margin of ±5km in the case of the normal solar sail is 99 days,

while in the case of the RCD solar sail, it is 22 days. In addition, in the case of

the normal solar sail, the error of y has a distinct overshoot of 82km, while in

the case of the RCD solar sail, the overshoot is 20km.

5.2.3. Case 3: influence of error in β

In this case, the same reference orbit as in case 2 is used. A 0.01% error in β

is considered. Fig. 16a and Fig. 16b show the results in the cases of the normal

solar sail and the RCD solar sail, respectively. In the case of the normal solar
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(b) RCD solar sail (Δσmax = 0.05)
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(c) RCD solar sail (Δσmax = 0.5)

Figure 14: Control performance in the cases using reference orbit in SSCR3BP

sail, both the position errors and the velocity errors are two orders of magnitude

bigger than those in the case of the RCD solar sail, which indicates that the

RCD solar sail is more robust to the error in β than the normal solar sail. It can

be seen from Fig. 16b that Δσ is nearly a constant of 10−3, which counteracts

the error δβ effectively.
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(a) Normal solar sail

(b) RCD solar sail

Figure 15: Control performance in the cases taking into account the injection error

6. Conclusion

This paper computes families of artificial halo orbits (AHOs) around the

collinear artificial equilibrium points in the solar sail elliptic restricted three-

body problem (SSER3BP) for a solar sail with reflectivity control devices (RCDs).

A modified 3rd order approximation method is used to compute the single-

revolution AHOs with periods equal to fractions of one year in the solar sail cir-

cular restricted three-body problem (SSCR3BP). The initialm-revolution AHOs

with period equal to integer multiples of one year are obtained by computing the

single-revolution AHOs for m periods. Then, the families of multi-revolution

AHOs in the SSER3BP are generated using a variable step numerical contin-

uation method with the eccentricity and the lightness number as continuation

parameters. The linear stability of the 2-revolution family and the 3-revolution

family is analyzed and it is shown that the in-plane motion is unstable while
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(b) RCD solar sail

Figure 16: Fig. 16 Control performance in the cases taking into account the error in β

the out-of-plane motion is neutrally stable and a bifurcation is identified. Fi-

nally, station-keeping for a normal solar sail and an RCD solar sail is designed

using LQR control. The simulation results show that the station-keeping perfor-

mance is poor when trying to track a reference orbit generated in the SSCR3BP,

but yields good tracking performance when a reference orbit generated in the

SSER3BP is used. In addition, the inclusion of RCD technology is shown to im-

prove station-keeping convergence rates in the presence of injection errors with

improved robustness to uncertainty in the sail lightness number.
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