Subject counting systems are extensively used in ambient intelligence applications, such as smart home, smart building and smart retail scenarios. In this paper, we investigate the problem of transforming an unmodified WiFi radio infrastructure into a flexible sensing system for passive subject counting. We first introduce the multi-dimensional channel features that capture the subject presence. Then, we compare Bayesian and neural network based machine learning tools specialized for subject discrimination and counting. Ensemble classification is used to leverage space-frequency diversity and combine learning tools trained with different channel features. A combination of multiple models is shown to improve the counting accuracy. System design is based on a dense network of WiFi devices equipped with multiple antennas. Experimental validation is conducted in an indoor space featuring up to five moving people. Real-time computing and practical solutions for cloud migration are also considered. The proposed approach for passive counting gives detection results with 99% average accuracy.

People counting by dense WiFi MIMO networks: Channel features and machine learning Algorithms

Kianoush S.;Savazzi S.;Rampa V.;Nicoli M.
2019-01-01

Abstract

Subject counting systems are extensively used in ambient intelligence applications, such as smart home, smart building and smart retail scenarios. In this paper, we investigate the problem of transforming an unmodified WiFi radio infrastructure into a flexible sensing system for passive subject counting. We first introduce the multi-dimensional channel features that capture the subject presence. Then, we compare Bayesian and neural network based machine learning tools specialized for subject discrimination and counting. Ensemble classification is used to leverage space-frequency diversity and combine learning tools trained with different channel features. A combination of multiple models is shown to improve the counting accuracy. System design is based on a dense network of WiFi devices equipped with multiple antennas. Experimental validation is conducted in an indoor space featuring up to five moving people. Real-time computing and practical solutions for cloud migration are also considered. The proposed approach for passive counting gives detection results with 99% average accuracy.
2019
5G; Cloud computing; Crowd sensing; Machine learning; MIMO WiFi
File in questo prodotto:
File Dimensione Formato  
RV_2019_sensors.pdf

accesso aperto

Descrizione: Full paper
: Publisher’s version
Dimensione 8.32 MB
Formato Adobe PDF
8.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1116151
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 10
social impact