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Abstract: Subject counting systems are extensively used in ambient intelligence applications, such as
smart home, smart building and smart retail scenarios. In this paper, we investigate the problem
of transforming an unmodified WiFi radio infrastructure into a flexible sensing system for passive
subject counting. We first introduce the multi-dimensional channel features that capture the subject
presence. Then, we compare Bayesian and neural network based machine learning tools specialized
for subject discrimination and counting. Ensemble classification is used to leverage space-frequency
diversity and combine learning tools trained with different channel features. A combination of
multiple models is shown to improve the counting accuracy. System design is based on a dense
network of WiFi devices equipped with multiple antennas. Experimental validation is conducted in
an indoor space featuring up to five moving people. Real-time computing and practical solutions for
cloud migration are also considered. The proposed approach for passive counting gives detection
results with 99% average accuracy.

Keywords: crowd sensing; MIMO WiFi; machine learning; 5G; cloud computing

1. Introduction

Internet of Things (IoT) and new ubiquitous connectivity paradigms beyond 5G have created
unprecedented dynamics for opportunistic sensing by exploiting low-cost radio devices [1,2]. Such new
sensing modalities leverage the cross-fertilization of computing and communication technologies
and are typically achieved through the transformation of natural, stray or ambient radio frequency
(RF) radiation into new sensing ways [3] to probe the environment and the people moving inside it.
In particular, the use of devices with built-in radio modems (e.g., WiFi or cellular-enabled devices) and
Multiple–Input Multiple–Output (MIMO) capabilities, as envisioned by 5G for device-free (or passive)
body motion sensing [1], is becoming attractive in many fields, such as smart homes and assisted
living applications. Device-free radio sensing provides privacy-preserving monitoring with increased
robustness to environmental conditions with respect to video-based systems [4,5], such as in case of
fire or variable light conditions.

In this paper, we address the specific problem of passive people counting in an indoor space
covered by a network of MIMO WiFi devices. The proposed counting system tracks and classifies the
perturbations of the electromagnetic field maintained by a WiFi network to detect and discriminate
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multiple subjects (namely the targets) that cause such perturbations. As depicted in the scenario of
Figure 1, target detection and counting is based on real-time processing of the radio channel that is
measured by a dense network of MIMO WiFi devices configured as transmitters (TXs) and receivers
(RXs) according to the specific wireless protocol.

Figure 1. Crowd sensing using a WiFi network composed by Nt transmitting and Nr receiving MIMO
WiFi devices. Each MIMO WiFi device is equipped with M antennas while Mt = Nt M and Mr = Nr M
are the total number of transmitting and receiving antennas, respectively.

Contributions

Capturing crowd dynamics (i.e., subject counting and tracking) by signal analytics in IoT networks
is an emerging topic in research as well as in practical implementation of crowd management systems
for smart city applications [6]. By using video footage, computer vision approaches allow accurate
crowd monitoring. However, deploying a camera network is costly and inhibits scalability for
events that happen infrequently. In addition, video systems have often different specific installation
requirements and privacy constraints, as well. On the other hand, supported by a large installation
basis, currently available IoT devices offer an excellent instrumentation ground for crowd monitoring,
thanks to the multitude of available sensors and radio interfaces (e.g., Bluetooth, WiFi, Thread and
ZigBee). Passive crowd monitoring by wireless networks is a new emerging topic of research but
some first experimental works can be found in the literature. In reference [7], the authors proposed
an algorithm to localize and count multiple targets. In order to address the non-linearity of the impact
of multiple subjects on the radio signals, they proposed a successive cancellation algorithm to iteratively
determine the number of subjects by modelling the indoor human trajectories as a state transition
process, using an indoor human mobility model and integrating all information into a Conditional
Random Field (CRF) to simultaneously localize and count the subjects. In reference [8], the authors
proposed a non-image people counting system based on a Deep Neural Network (DNN) model
using fine-grained physical-layer wireless signatures such as WiFi CSI (Channel State Information)
data. Real test-bed experiments showed that the proposed system can achieve an average correct
classification rate up to 88% when estimating the crowd size in indoor scenarios with up to nine
people. In reference [9], the authors suggested a people counting algorithm using Impulse Radio
Ultra-WideBand (IR-UWB) radar sensors, equipped with antennas which have narrow beam width.
The system performances have been validated in a representative environment, showing results with
large accuracy. However, the use of dedicated UWB radar sensors is still an expensive choice for
applications in massive IoT smart spaces, where thousands of IoT devices are deployed.

This paper proposes the transformation of a dense MIMO WiFi network into a passive crowd
sensing system by exploiting Machine Learning (ML) tools that process multi-dimensional CSI
extracted from different PHY (PHYsical layer) frames, MIMO antennas and sub-carriers. Dense MIMO
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networks pose remarkable scalability challenges in signal processing due to the increase of the
dimensions of the CSI data that are usually represented as tensors or multi-dimensional arrays.
Therefore, unlike previous approaches, we propose here ML tools that are designed to fully exploit the
statistical coherence of the CSI data over this multi-dimensional space domain (i.e., antenna, frequency,
time) in order to extract compact but maximally informative CSI features. In other words, CSI data
tensors are pre-processed to produce custom-designed features that are organized in accordance to the
meaning of the underlying data dimensionality.

Based on such premise, ensemble classification and ML approaches based on different
multi-dimensional features are compared, such as Bayesian techniques, recurrent Long-Short Term
Memory (LSTM) neural network and Feed-Forward Neural Network (FF-NN) models [10]. Finally,
considering the problem of scalability to large monitored areas (e.g., system deployed in buildings or
multiple rooms), we consider the problem of transferring part of the data analytics to an edge-cloud
system to support real-time monitoring [11].

The paper is organized as follows: Section 2 discusses the selection of multi-dimensional radio
channel features according to the space-frequency MIMO configurations. Section 3 presents the
computing architecture including ML tools and the edge-cloud computation system, while Section 4
describes the experimental validation setup and presents some numerical results. Finally,
some conclusions are drawn in Section 5.

2. CSI Features for Subject Counting

We consider the problem of extracting information about the number C ∈ {0, 1, . . . , N} ⊂ N of
human targets moving in a monitored area X by processing CSI data measured over a broadband
multi-carrier MIMO network deployed in the area. As illustrated in Figure 1, the network is composed
of Nt transmitting and Nr receiving devices, each equipped with M antennas. Modulation is based
on Orthogonal Frequency-Division Multiplexing (OFDM). The overall network MIMO system is thus
characterized by Mt = Nt M transmitting and Mr = Nr M receiving antennas. Any target moving
inside the area modifies the radio propagation between the devices and thus is expected to affect
the MIMO CSI in terms of mean power (due to body induced attenuation), fading (due to body
movements) and space-frequency selectivity (due to the alteration of the multipath dispersion).

We propose to observe the baseband channel response over the space-frequency-time domains
to capture the overall impact and extract all available information about the presence and number
of targets in the area. We assume that the MIMO channel can be estimated at the receiver side
at the discrete time instants t ∈ T = {1, 2, . . . , T}, spanning over T OFDM symbols (or frames).
These observations are expected to embed a characteristic footprint of the channel variations induced
by people movements in the monitored area.

2.1. MIMO-OFDM Channel Response and CSI Data Sets

Using a conventional channel estimation method based on standard-defined pilot sub-carrier
arrangement [12], the MIMO channel response is monitored in the frequency domain over K pilot
sub-carriers f ∈ F = { f1, f2, . . . , fK}. OFDM training symbols for channel estimation are usually
multiplexed with information symbols in each data frame according to the adopted WiFi standard.
The complex baseband channel response observed on frequency f ∈ F , over the link ` = `(at, ar)

between the transmitting antenna at = 1, . . . , Mt and receiving antenna ar = 1, . . . , Mr, at time t ∈ T ,
is denoted as H f ,`,t, where the index ` ∈ L = {1, 2, . . . , L} ranges over the L = Mt Mr radio links.

Focusing on subject counting, we highlight the channel response in the space and frequency
domains as the input for feature processing. In particular, we define the L× 1 space-domain channel
response for the sub-carrier f as

H f
t = [H f ,`,t]`∈L , (1)
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while the K× 1 frequency-domain response for the link ` is defined as

H`
t = [H f ,`,t] f∈F . (2)

Finally, we define the overall space-frequency CSI as Ht = [H f ,`,t] f∈F ,`∈L. These CSI sets are
expected to embed information about the number of targets C and are thus used in the next sections to
extract the features for target counting.

2.2. Space-Frequency Domain CSI Features

In what follows, features are built according to the CSI measured over the space (1) and the
frequency (2) domains. The CSI strength observed at time t ∈ T on sub-carrier f ∈ F and link ` ∈ L,
is defined in dB scale as s f ,`,t = |H f ,`,t|2dB. Relevant features can be extracted from these CSI data for
counting and crowd size classification. In particular, body movements are expected to modify the
statistical properties of the CSI in both the space and frequency domains, such as the strength moments
evaluated as average over time in a given space-frequency sample (e.g., the mean and variance,
related to the body induced attenuation and fading), as well as the correlation over the sub-carrier
frequencies (accounting for the crowd impact on the multipath power-delay profile) and over the
antennas (accounting for the impact on the MIMO power-space profile). Thereby, in the following,
we consider the statistics of the overall CSI power space-frequency profile. The frequency-domain CSI
strength vector for link ` at time t is defined as

s`,t = [s f1,`,t · · · s fK ,`,t]
T (3)

which collects the measurements of the channel response over all the sub-carriers for the link ` ∈ L
and, similarly, the space-domain CSI vector

s f ,t = [s f ,1,t · · · s f ,L,t]
T (4)

collecting the channel measurements over all active MIMO links, for the pilot sub-carrier f ∈ F .
Considering a single channel strength sample s f ,`,t extracted from the frequency or space

domain vectors, we choose four distinctive statistical indicators that provide a representation of
the corresponding probability function s f ,`,t ∼ Pr[s f ,`,t], namely

µ f ,` = Et

[
s f ,`,t

]
,

σf ,` =

√
Et

[(
s f ,`,t − µ f ,`

)2
]

,

ζ f ,` = Et

[( s f ,`,t−µ f ,`
σf ,`

)3
]

,

κ f ,` = Et

[( s f ,`,t−µ f ,`
σf ,`

)4
]

.

(5)

where µ f ,` and σf ,` are the mean and the standard deviation, while ζ f ,` and κ f ,` are the skewness
(i.e., third moment) and kurtosis (i.e., fourth moment) coefficients herein evaluated over consecutive
time samples (i.e., WiFi frames). In particular, the skewness indicator captures the distance between
mean and mode values, while kurtosis measures the concentration of the probability mass in the tails
of the distribution.

Both skewness and kurtosis features are affected by the number of targets C as illustrated in
Figure 2. The figure shows the empirical distribution of the CSI strength measurements p f ,`(s) =

Pr[s f ,`,t] built by observing the statistics over a number T of consecutive MIMO WiFi frames t, for the
link index 5 (` = 5) and the sub-carrier index 5 ( f = f5). Corresponding features include the mean µ,
the standard deviation σ, the skewness ζ and the kurtosis κ. As shown in the figure, the values of the
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CSI indicators change with the number of the subjects inside the area. For example, mean, standard
deviation, kurtosis and skewness values are −52.9 dBm, 1 dB, −0.14 dB3, and 2.8 dB4 for C = 1 and
−55.5 dBm, 4.1 dB, −2.24 dB3, and 13.2 dB4 for C = 5, respectively.

Figure 2. Histogram p f ,`(s) of the CSI strength sample s5,5 in dBm, for f = f5 and ` = 5, and the
corresponding extracted features including mean [dBm], standard deviation [dB], skewness [dB3], and
kurtosis [dB4] over time series. Measurements are obtained from the proposed system deployed in the
layout shown in Figure 3 in the empty space case (C = 0) and for the subject number C ranging from 1
up to 5.

A feature embodying the moments of all orders is the CSI distribution. Figures 3 and 4 show
the CSI distribution versus links p`(s) = Pr[s f ,`,t = s|`], for ` ∈ L, and versus frequency p f (s) =

Pr[s f ,`,t = s| f ], for f ∈ F , obtained in the form of histogram from real measurements taken in an indoor
environment, with number of targets ranging from C = 0 (i.e., empty environment) up to C = N = 5.
In particular, Figure 3 shows the CSI distribution p`(s) versus link ` built by aggregating the samples
over the frequency domain, while Figure 4 represents the distribution p f (s) versus sub-carrier f by
aggregating over the links. As it can be seen from these figures, the CSI distributions in both space
and frequency domains are sensitive to the number of targets. Statistics change more significantly for
0 ≤ C ≤ 2, whereas, for 2 < C ≤ 5, the dependence due to the number of targets is less evident but
still present and can be fully exploited by using the CSI distribution to build these features.

In what follows, real-time subject counting is based on the analysis of time series of T consecutive
MIMO WiFi frames. The four statistical indicators in (5) are thus evaluated over both frequency and
space domains, resorting to temporal sequences, or features, of T samples or frames. Notice that,
as highlighted in Sections 3 and 4, the number T of frames per feature depends on the learning model.
For the frequency domain, we define four time series vectors

µ` = [µ1,` · · · µT,`]
T ,

σ` = [σ1,` · · · σT,`]
T ,

ζ` = [ζ1,` · · · ζT,`]
T ,

κ` = [κ1,` · · · κT,`]
T .

(6)
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where µt,` is defined as µt,` = E f [s f ,`,t] while σt,`, ζt,`, and κt,` are defined similarly as in (5) but
replacing time index with the frequency one while expectations are made over f ∈ F . For space
domain, the corresponding features are described by the vectors

µ f = [µ1, f · · · µT, f ]
T ,

σ f = [σ1, f · · · σT, f ]
T ,

ζ f = [ζ1, f · · · ζT, f ]
T ,

κ f = [κ1, f · · · κT, f ]
T .

(7)

where µt, f is defined as µt, f = E`[s f ,`,t] while µt, f , σt, f , ζt, f , and κt, f are defined as in (5), by replacing
the time index with the link one while expectations are made over ` ∈ L. Features (6) and (7) can be
also represented as the sets [µt,`, σt,`, ζt,`, κt,`]

T
t=1 and [µt, f , σt, f , ζt, f , κt, f ]

T
t=1, respectively. Both feature

sets (6) and (7) are used an input to machine learning tools detailed in Sections 3 and 4.
As an example, Figure 5 shows the 2D histograms of the CSI mean feature µt, f and µt,` in the space

and frequency domains as well, for varying number C of people in the range 0 ≤ C ≤ 5. As shown
in the figure, the distribution properties are substantially affected by the number of subjects. Again,
the sensitivity is higher for C in the range 0 ≤ C ≤ 2. Similar effects (not shown here) are observed
considering the deviations, skewness and kurtosis in (6) and (7).

The impact of body movements on higher order CSI moments over multiple antennas
(space domain) and sub-carriers (frequency domain) is still unexplored in the literature. In the following
sections, we deepen the topic by proving that, compared to the unobstructed environment, the presence
of the target(s) affects both the space- and frequency-domain CSI moments and such alterations can be
exploited as reliable features for target counting.

Figure 3. CSI histograms versus links p`(s) with ` = 1, . . . , 27, for the number of people ranging from
C = 0 (empty environment) up to C = 5 evaluated by aggregating data over K = 30 sub-carriers.
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Figure 4. CSI histograms versus frequency p f (s) with f = f1, . . . , f30, for the number of people ranging
from C = 0 (empty environment) to C = 5 evaluated by aggregating data over L = 27 links.

Figure 5. 2D histogram of CSI mean in space (i.e., µt, f ) and frequency (i.e., µt,`) domain for the empty
space case and the subject number ranging from 1 up to 5.

3. Computing Architecture and Processing Tools for Subject Counting

In this section, we highlight the computing architecture and the CSI processing tools that are
implemented for real-time subject counting. The proposed system relies on computing and caching
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stages (see Figure 6) that run inside the WiFi Access Point (AP) device, serving as edge node and
inside a computing device, deployed remotely that serves as cloud node. The WiFi AP is in charge of
the segmentation and extraction of the CSI features (Section 2) obtained from the CSI measurements
performed by the deployed WiFi devices. The cloud node processes the features received from the WiFi
AP to infer the number of subjects and, possibly, forwards this information via the MQTT (Message
Queuing Telemetry Transport) protocol [13] to different subscribers or applications [14]. As depicted
in the same figure, the WiFi AP, serving as edge node, exposes a set of REpresentational State Transfer
(REST) Application Programming Interfaces (APIs) that are used by the WiFi devices to send the CSI
data (via HTTP POSTs) encoded in a Java Script Object Notation (JSON) format [15]. The AP node
extracts the CSI features used for subject counting (Section 2) and publishes such features via the
MQTT protocol. Finally, the cloud device, acting as MQTT subscriber, processes such features for
inference and, in turn, publishes the detected targets results.

In what follows, we discuss the ML tools for CSI feature processing that are implemented in the
cloud to perform subject counting.

Figure 6. Edge-cloud computing architecture for CSI data manipulation, feature processing and
subject counting.

3.1. Machine Learning Tools for CSI Feature Processing

ML tools [16] are here adopted for real-time processing of the CSI features extracted as in Section 2
from multidimensional channel data observed over time, frequency and links to provide an estimate
Ĉ of the number of subjects C moving in the monitored area. The learning process benefits from the
combination of multiple models that are individually trained and optimized based on the input time
series of CSI features defined in (6) and (7) in both frequency and space domain. More specifically,
as highlighted in Figure 7, we construct ensembles that independently train J individual Neural
Network (NN) models ϕj with j = 1, . . . , J. Ensemble approaches for learning have two major
components, that is, a method for creating individual NNs and a method for combining NNs, typically
by weighted or unweighted, voting [17]. We consider two NN types, namely the LSTM and the FF-NN
models. Each network is optimized, by supervised learning, for a specific feature vector. The input
for each model ϕj thus consists of space-frequency domain features (6) and (7) obtained in a specific
time frame. Ensemble methods combine multiple learning models ϕj with the goal of improving
the robustness over a single estimator [18]. As highlighted in Section 4, considering the four CSI
feature vectors corresponding to the first four statistical moments of the input CSI data shown in
Section 2, the proposed ensemble model exploits the output of J classification algorithms. Popular
combining architectures for constructing ensemble are the bagging [17] and boosting [19] algorithms.
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Here, a bagging approach is adopted while unweighted major voting is chosen to combine the outputs
Ĉ(ϕj) of the individual NN classifiers to update the new detection estimate. In Section 4, optimal
combinations of NNs to maximize the system performances are investigated as well.

Figure 7. Block diagram of the ensemble classifier where the input data are the CSI samples. Multiple
features, that are used as input to the model blocks, include mean µ, standard deviation σ, skewness
ζ, and kurtosis κ computed in the frequency {µ`, σ`, ζ`, κ`} (6) and space {µ f , σ f , ζ f , κ f } (7) domains.
LSTM and FF-NN models are used in model blocks ϕj and an individual decision is made by each
block. Ensemble classification Ĉ is based on majority vote of individual decisions Ĉ(ϕj).

3.2. Kullback-Leibler Divergence for Processing of CSI Distribution Features

The Kullback-Leibler (KL) divergence [20] is commonly used to measure the similarity between
two distributions. This metric is here employed to design a further tool for subject counting (in addition
to ML tools proposed in the previous section), based on the evaluation of the similarity between
the CSI distributions built from the training phase and the input CSI observations. We define as
q f ,`(s|C) = Pr[s f ,`,t = s|C] the CSI distribution obtained from training on sub-carrier f and link
` (see Section 4), when C subjects are moving in the space. For C = 1, . . . , N targets, the subject
counting process consists in computing N KL divergence measures (or likelihoods, in the Gaussian
case) between the observed input distribution p f ,`(s) = Pr[s f ,`,t = s] and the N distributions q f ,`(s|C)
collected at training stage for C = 1, . . . , N. In particular, the KL divergence for C target(s) is defined as

DKL f ,`(C) = DKL(p f ,`(s)||q f ,`(s|C)) = ∑
s

p f ,`(s) log
p f ,`(s)

q f ,`(s|C)
(8)

Divergence (8) can be used to define feature vectors, similarly to what done for mean, standard
deviation, skewness and kurtosis, that are used as input to learning tools (Section 4). In particular,
considering processing in the frequency domain, the minimum divergence estimator of the number of
targets Ĉ can be written as

Ĉ` = argmin
C=1,...,N

K

∑
k=1

DKL fk ,`(C) (9)

and, similarly, in the space domain, it is

Ĉ f = argmin
C=1,...,N

L

∑
`=1

DKL f ,`(C). (10)

For both cases, the final decision is based on majority voting on C`, in frequency and C f , in space
domain, respectively.

4. Subject Counting: Results and Discussions

The experimental activities have been conducted inside the indoor lab environment shown
in Figure 8. We employed a network of 10 MIMO WiFi devices that have been distributed over
a monitored area having size 6 × 4 m2. A single MIMO WiFi device (i.e., Nt = 1) is acting as TX
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while Nr = 9 MIMO WiFi devices are configured as RXs; each MIMO WiFi device is equipped with
M = 3 antennas. Devices are deployed in the monitored area to capture the target presence at
different positions. Usually, the sensing network is not regularly deployed around the perimeter of
the monitored area (as also proposed in the experimental setup); however, clustering of nodes might
affect the performance, as analyzed in reference [21] for localization purposes. Although not explicitly
addressed in this paper, node layout can be optimized during a pre-deployment stage by using, for
example, a Cramer-Rao bound based analysis to evaluate the impact of the geometric factor on the
inference system performance [21]. This experimental section instead focuses on system validation
in a real environment where the deployment of the sensors is assigned and node optimization is not
allowed. Deployment optimization to improve the counting accuracy is however an interesting and
open problem, also considering that passive detection in large buildings is typically obtained by scaling
up the number of MIMO WiFi devices (for dense deployments). In the proposed tests, all MIMO
WiFi devices are configured in monitor mode and working in the 5.32 GHz band (i.e., WiFi band 2,
channel 64, OFDM symbol sub-carrier spacing 312.5 kHz and nominal bandwidth equal to 20 MHz).
The monitor mode allows the receivers to observe the CSI values on the considered channel without
explicit IP handshaking procedures. The TX device is programmed to inject (i.e., transmit) custom IEEE
802.11n PHY Protocol Data Units (PPDU) structured as standard High-Throughput (HT) greenfield
WiFi format [22] including preamble, MAC addresses, header and payload: injected frames are sent at
regular time intervals of 10 ms. In our tests, the TX device acts as an access point while the RX devices
are collecting and measuring CSI reports. Modified chipset firmware and kernel [23] have been used to
obtain the CSI samples of received IEEE 802.11n data frames. The adopted chipset is the Intel Wireless
Link 5300 working as a MIMO-OFDM baseband modem. The modified driver allows to extract the
standard CSI reports for uni-cast/broadcast packets. CSI reports are organized into a JSON format as
described in Figure 6. Each JSON object tracks the CSI data set, organized by frequency, antenna and
time frames, the device identifiers and the timestamps.

Figure 8. Deployment layout for the experimental subject counting system including Nt = 1 TX and
Nr = 9 RX devices with M = 3 antennas for each device. Distance between antennas at receiver is 6
cm, while transmitter antennas are spaced apart by 21 cm. The monitored area size is 6× 4 m2. Up to
N = 5 people enter this area and walk along the middle line thus blocking the LOS path between TX
and RXs.
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As shown in Figure 8, the MIMO WiFi devices are arranged to cover the whole monitored area
and to capture signals obstructed by moving objects. The overall number of TX and RX antennas is
Mt = 3 and Mr = 27, respectively. CSI data are collected over K = 30 sub-carriers. Up to N = 5
people are moving inside the room across the LOS (Line Of Sight) as shown in Figure 8. The LOS path
indicates the link path, where TX and RX are facing in straight line.

4.1. Classifier tools for Subject Counting

In our experimental tests, the crowd size increases from C = 1 up to C = 5 people while
body motion patterns are performed inside the monitored area as shown in Figure 8. In particular,
in the proposed set-up, 1 ≤ C ≤ 5 people enter the area one by one, staying/wandering for 10
s across the LOS path and then leaving sequentially one by one. Thus, up to N = 5 people may
occupy simultaneously the monitored area. To detect the presence and estimate the number of people,
we exploit state-of-the-art classifiers that employ the first two statistical channel strength moments as
CSI features, namely the mean and standard deviations. In particular, we compare the performance of
FF-NN, LSTM and maximum likelihood approaches [24] implemented separately, as routinely done
in device-free localization (DFL) applications. We evaluate the performance in terms of accuracy,
defined as the probability of correct classification. In addition, we assess also the performance of the
KL divergence minimization approach (Section 3.2) that can be interpreted as a generalization of the
maximum likelihood techniques, under non-Gaussian assumptions.

Table 1 shows the accuracy results for the maximum likelihood approach. The CSI distribution
p f ,`(s) is approximated here as normal with mean and standard deviation terms altered by the presence
of multiple targets. Numerical results show that despite the system can accurately discriminate between
C = 1 and C = 2 targets, when the crowd size increases the counting accuracy performance drops to
0.55 and 0.30, respectively.

Table 1. Accuracy of subjects counting using maximum likelihood estimation based on normal
modelling for the CSI distribution Pr[s f ,`,t] in space and frequency domains.

C Empty 1 2 3 4 5

space domain 0.44 1 0.84 0.9 0.43 0.55

frequency domain 1 0.9 0.92 0.31 0.54 0.3

In Table 2, we assess the performance of the subject counting system using the KL divergence
minimization. In particular, during the training phase, we collect CSI measurements from L = 27 links
and K = 30 sub-carriers and extract the corresponding distributions q f ,`(s|C) for varying number
of targets C = 1, . . . , 5. Real-time processing is then implemented separately in the space (10) and
frequency domain (9) by choosing the minimum divergence with respect to the observed (input)
distribution p f ,`(s). Table 2 summarizes the accuracy performance obtained in the space and frequency
domain processing, respectively. As seen previously according to the maximum likelihood approach,
we observe a significant performance degradation when the number of targets increases.

Table 2. Accuracy of subjects counting using the CSI distribution features and the KL divergence
approach in space (10) and frequency domains (9).

C 1 2 3 4 5

space domain 1 0.51 0.43 0.29 0.22

frequency domain 0.93 0.5 0.4 0.39 0.28

Figures 9 and 10 represent the confusion matrix results using the mean and standard deviation
CSI features, in the space-frequency domain, when FF-NN (Figure 9) and LSTM (Figure 10) networks
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are chosen as classifiers, respectively. Confusion matrices highlight the average accuracy, as well as the
precision and recall figures for varying number of targets 0 ≤ C ≤ 5. Compared with the previous
techniques, the average accuracy improves. Moreover, space domain CSI features (7) provide some
advantages compared with frequency domain terms. In the following section, an ensemble classifier is
adopted to combine multiple CSI features. In addition, we assess also the inclusion of skewness and
kurtosis metrics (5) to further improve the system performances.

Figure 9. Confusion matrices for the FF-NN classifier for subject counting, C = 0, 1, 2, ..., 5 where
C = 0 corresponds to the empty environment. Top figure: frequency domain CSI features: mean (left)
and standard deviation (right). Bottom figure: space domain CSI features: mean (left) and standard
deviation (right).
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Figure 10. Confusion matrices for the LSTM classifier for subject counting, C = 0, 1, 2, ..., 5. Top figures:
frequency domain CSI features: mean (left) and standard deviation (right). Bottom figures: space
domain CSI features: mean (left) and standard deviation (right).

4.2. Ensemble Learning and Bagging: Channel Features and Comparative Analysis

In this section, we assess the performances of an ensemble method (Figure 7) to combine different
models with the goal of improving the robustness over the single estimators highlighted in the previous
sections. In particular, the proposed ensemble model exploits the output of different classification
algorithms, separately trained, that use four different CSI features as inputs, namely the mean, standard
deviation, skewness and kurtosis (5). Table 3 shows the accuracy results for the same layout of Figure 8:
it compares four CSI features: mean, standard deviation, skewness and kurtosis, using an ensemble
model that implements either FF-NN or LSTM classifiers in each branch ϕj. In particular, the FF-NN
consists of one hidden layer of 10 nodes and takes as input either the space or the frequency domain
CSI features obtained from T = 50 WiFi frames. Likewise, the LSTM network consists of 100 hidden
units and extracts sequences of CSI features using a moving window of T = 8 consecutive WiFi frames.
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Table 3. Accuracy of counting subjects using machine learning tools in space and frequency domains.

FF-NN, Frequency Domain

C Empty 1 2 3 4 5
kurtosis 0.24 0.21 0.68 0.36 0.42 0.557

skewness 0.45 0.956 0.63 0.7 0.59 0.52
standard deviation 0.68 0.78 0.84 0.67 0.58 0.76

mean 0.73 0.9 0.94 0.79 0.67 0.84

FF-NN, Space Domain

C Empty 1 2 3 4 5
kurtosis 0.31 0.43 0.61 0.46 0.43 0.47

skewness 0.29 0.46 0.54 0.36 0.54 0.62
standard deviation 0.43 0.65 0.89 0.63 0.71 0.78

mean 0.92 0.96 0.98 0.94 0.96 0.92

LSTM, Frequency Domain

C Empty 1 2 3 4 5
kurtosis 1 1 0.9 0.36 0.63 0.45

skewness 1 0.9 1 0.9 0.27 0.45
standard deviation 0.18 1 1 0.81 0.72 0.9

mean 0.72 0.45 1 0.8 1 1

LSTM, Space Domain

C Empty 1 2 3 4 5
kurtosis 1 0.9 1 0.63 0.72 0.36

skewness 1 1 1 0.72 0.63 0.54
standard deviation 0.8 1 1 1 1 1

mean 1 1 1 0.9 1 1

As highlighted in the previous sections, the ensemble model learns a classifier (FF-NN or LSTM)
on different training sets, namely different CSI features and finally combines the results by voting.
Multiple FF-NN and LSTM networks are thus trained using different CSI features and a supervised
approach. For both FF-NN and LSTM, 80% of data is used for training, 10% for validation and
10% for testing. The results summarized in Table 3 show that an ensemble model, based on J = 11
parallel LSTM classifier networks, provides the best performance with 99% accuracy. Regarding the
space-frequency diversity for target counting, the use of space-domain features provides more accurate
results (regardless of the deployed classifier, that is, FF-NN or LSTM). For example, an ensemble model
that combines J = 11 LSTM classifiers and uses statistical average features provides an accuracy of 99%
in the space domain. The accuracy drops to 83% when using frequency domain features (and the same
ML classifiers). FF-NN classifier networks obtain an accuracy of 95% using space domain features
and drops to 81% with frequency domain ones. Therefore, these results confirm that space domain
CSI features are more effective in capturing the multipath effects induced by multiple targets. Also,
comparing various features used for target counting, the experiments confirm that combining features
in both space and frequency domain provides more accurate results.

5. Conclusions

In this paper, we proposed device-free target counting using physical layer channel information
from a WiFI-MIMO network in the space-frequency domain. Multidimensional statistical channel
features are introduced and an ensemble classifier based on machine learning tools is detailed to
efficiently use the multidimensional CSI data for target counting. Cloud computing is proposed to
collect and classify the channel features in real-time for target counting. Experimental tests conducted
to validate the proposed approach performance in indoor environments with crowd size up to N = 5
people, give a classification accuracy of about 99% using LSTM and statistical mean feature in the
space domain. Future work will focus on two major activities: the exploitation of a physical model to
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simplify feature extraction during the calibration phase and the introduction of heterogeneous models
for ensemble classification.
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