Heterogeneous colorimetric sensors for fluoride ions were obtained by cross-linking TEMPO-oxidized cellulose nanofibers (TOCNF) with chemically modified branched polyethyleneimine 25 kDa (bPEI). Functionalization of bPEI primary amino groups with aromatic anhydrides led to the formation of the corresponding mono- and bis-imides on the grafted polymers (f-bPEI). A microwave-assisted procedure allowed the optimization of the synthetic protocol by reducing reaction time from 17 h to 30 minutes. Hydrogels obtained by mixing different ratios of TOCNF, bPEI and f-bPEI were lyophilized and thermally treated at about 100 °C to promote the formation of amide bonds between the amino groups of poly-cationic polymers and the carboxylic groups of cellulose nanofibers. This approach generated a series of cellulose nanosponges S1-S3 which were characterized by FT-IR and by solid state 13C CPMAS NMR. These sponge materials can act as colorimetric sensors for the selective naked-eye recognition of fluoride ions over chloride, phosphate and acetate ions at concentrations of up to 0.05 M in DMSO. Moreover, when the sponges were functionalized with perylene tetracarboxylic diimide, successful naked-eye detection was achieved with only 0.02 % w/w of chromophore units per gram of material.

Naked-Eye Heterogeneous Sensing of Fluoride Ions by Co-Polymeric Nanosponge Systems Comprising Aromatic-Imide-Functionalized Nanocellulose and Branched Polyethyleneimine

RIVA, LAURA;Fiorati A.;Sganappa A.;Melone L.;Punta C.;Cametti M.
2019-01-01

Abstract

Heterogeneous colorimetric sensors for fluoride ions were obtained by cross-linking TEMPO-oxidized cellulose nanofibers (TOCNF) with chemically modified branched polyethyleneimine 25 kDa (bPEI). Functionalization of bPEI primary amino groups with aromatic anhydrides led to the formation of the corresponding mono- and bis-imides on the grafted polymers (f-bPEI). A microwave-assisted procedure allowed the optimization of the synthetic protocol by reducing reaction time from 17 h to 30 minutes. Hydrogels obtained by mixing different ratios of TOCNF, bPEI and f-bPEI were lyophilized and thermally treated at about 100 °C to promote the formation of amide bonds between the amino groups of poly-cationic polymers and the carboxylic groups of cellulose nanofibers. This approach generated a series of cellulose nanosponges S1-S3 which were characterized by FT-IR and by solid state 13C CPMAS NMR. These sponge materials can act as colorimetric sensors for the selective naked-eye recognition of fluoride ions over chloride, phosphate and acetate ions at concentrations of up to 0.05 M in DMSO. Moreover, when the sponges were functionalized with perylene tetracarboxylic diimide, successful naked-eye detection was achieved with only 0.02 % w/w of chromophore units per gram of material.
2019
cellulose; cross-linking; fluoride ions; sensors; sponges
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1114942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact