The Pierre Auger Observatory, designed to detect ultra-high energy cosmic rays, can be a valid instrument at the ground to study phenomena related to the atmospheric electricity. The fluorescence detector is a powerful instrument to observe ELVES thanks to its excellent time resolution, while peculiar events with a large number of triggered stations have been recorded by the surface detector. The characteristic signal of these events lasts more than 10 mu s, about two orders of magnitude more than the duration of a signal produced by a cosmic muon. Moreover, each of these events has at least one station with a signal dominated by a high-frequency noise that could be related with a lightning-induced signal. Stations with a long-lasting signal are arranged in a disk shape. There are "big" events characterized by a radius of about 6 km and few "small" events with a radius of about 2-3 km. The signal, generated by a source very close to the ground, first reaches the innermost stations and then spreads outwards. In the "big" events, a lack of signal in some of the central stations was observed. Further studies and checks are in progress to understand the origin of the lack of signal and what mechanisms occurring during the lightning evolution may provide for electric fields capable of generating and accelerating particles that can produce Cherenkov light in the stations of the surface detector.

The observation of lightning-related events with the Surface Detector of the Pierre Auger Observatory

G. Consolati;
2019-01-01

Abstract

The Pierre Auger Observatory, designed to detect ultra-high energy cosmic rays, can be a valid instrument at the ground to study phenomena related to the atmospheric electricity. The fluorescence detector is a powerful instrument to observe ELVES thanks to its excellent time resolution, while peculiar events with a large number of triggered stations have been recorded by the surface detector. The characteristic signal of these events lasts more than 10 mu s, about two orders of magnitude more than the duration of a signal produced by a cosmic muon. Moreover, each of these events has at least one station with a signal dominated by a high-frequency noise that could be related with a lightning-induced signal. Stations with a long-lasting signal are arranged in a disk shape. There are "big" events characterized by a radius of about 6 km and few "small" events with a radius of about 2-3 km. The signal, generated by a source very close to the ground, first reaches the innermost stations and then spreads outwards. In the "big" events, a lack of signal in some of the central stations was observed. Further studies and checks are in progress to understand the origin of the lack of signal and what mechanisms occurring during the lightning evolution may provide for electric fields capable of generating and accelerating particles that can produce Cherenkov light in the stations of the surface detector.
2019
Atmospheric Monitoring for High Energy Astroparticle Detectors (AtmoHEAD) 2018
File in questo prodotto:
File Dimensione Formato  
COLAR01-19.pdf

accesso aperto

Descrizione: Paper
: Publisher’s version
Dimensione 877.91 kB
Formato Adobe PDF
877.91 kB Adobe PDF Visualizza/Apri
Pierre Auger Collaboration Author List.pdf

accesso aperto

Descrizione: Paper
: Altro materiale allegato
Dimensione 197.41 kB
Formato Adobe PDF
197.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1110736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact