We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike model-based approaches, the proposed approach is non-intrusive since it just requires a collection of input-output pairs generated through the high-fidelity (HF) ODE or PDE model. We formulate our model reduction problem as a maximum-likelihood problem, in which we look for the model that minimizes, in a class of candidate models, the error on the available input-output pairs. Specifically, we represent candidate models by means of ANNs, which we train to learn the dynamics of the HF model from the training input-output data. We prove that ANN models are able to approximate every time-dependent model described by ODEs with any desired level of accuracy. We test the proposed technique on different problems, including the model reduction of two large-scale models. Two of the HF systems of ODEs here considered stem from the spatial discretization of a parabolic and an hyperbolic PDE respectively, which sheds light on a promising field of application of the proposed technique.

Machine learning for fast and reliable solution of time-dependent differential equations

Regazzoni, F.;Dedè, L.;Quarteroni, A.
2019-01-01

Abstract

We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike model-based approaches, the proposed approach is non-intrusive since it just requires a collection of input-output pairs generated through the high-fidelity (HF) ODE or PDE model. We formulate our model reduction problem as a maximum-likelihood problem, in which we look for the model that minimizes, in a class of candidate models, the error on the available input-output pairs. Specifically, we represent candidate models by means of ANNs, which we train to learn the dynamics of the HF model from the training input-output data. We prove that ANN models are able to approximate every time-dependent model described by ODEs with any desired level of accuracy. We test the proposed technique on different problems, including the model reduction of two large-scale models. Two of the HF systems of ODEs here considered stem from the spatial discretization of a parabolic and an hyperbolic PDE respectively, which sheds light on a promising field of application of the proposed technique.
2019
File in questo prodotto:
File Dimensione Formato  
11311-1100361_Dedè.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1100361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 73
social impact