
Machine learning for fast and reliable solution of

time-dependent differential equations

F. Regazzoni1, L. Dedè1, and A. Quarteroni1,2

1MOX - Dipartimento di Matematica, Politecnico di Milano,
P.zza Leonardo da Vinci 32, 20133 Milano, Italy

2Mathematics Institute, École Polytechnique Fédérale de Lausanne,
Av. Piccard, CH-1015 Lausanne, Switzerland (Professor Emeritus)

Abstract

We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial
Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential
Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike model-
based approaches, the proposed approach is non-intrusive since it just requires a collection
of input-output pairs generated through the high-fidelity (HF) ODE or PDE model. We
formulate our model reduction problem as a maximum-likelihood problem, in which we look
for the model that minimizes, in a class of candidate models, the error on the available input-
output pairs. Specifically, we represent candidate models by means of ANNs, which we train to
learn the dynamics of the HF model from the training input-output data. We prove that ANN
models are able to approximate every time-dependent model described by ODEs with any
desired level of accuracy. We test the proposed technique on different problems, including the
model reduction of two large-scale models. One of the HF systems of ODEs here considered
stems from the spatial discretization of a parabolic PDE, which sheds light on a promising
field of application of the proposed technique.

Keywords Machine Learning, Differential equations, Model Order Reduction, System Identi-
fication, Artificial Neural Networks, Data-driven modeling

1 Introduction

The numerical simulation of time-dependent mathematical models is often needed in applied sci-
ences. The increasing demand of more complex and reliable mathematical models may sometimes
lead to an unbearable demand for computational resources, either in terms of computational power
or memory storage. Moreover, in many applications, there is the need to perform simulations of
a given model multiple times (multi-query) and for many different inputs, either for sensitivity-
analysis, optimization, control or uncertainty-quantification purposes, or to deal with multiscale
problems in space, where a dynamical model needs to be solved virtually in any point of a com-
putational domain. In several contexts, such as computational medicine, complex mathematical
models, although precise and reliable, may be useless for practical purposes if these cannot be
solved nearly in real-time.

This strongly motivates the development of reduced models, that is computationally tractable,
lower dimensional mathematical models which can be solved with a smaller effort (both in terms
of time and computational resources), yet reproducing with a good approximation the results of
the high-fidelity (HF) model (Antoulas, Sorensen, and Gugercin 2000; Benner, Mehrmann, and
Sorensen 2005; Quarteroni, Manzoni, and Negri 2015; Quarteroni and Rozza 2014).

In this paper, we focus on time-invariant systems, whose behaviour is determined by a time-
dependent input u(t) ∈ RNu and endowed with an output y(t) ∈ RNy . Let us consider the following

1

general1 form for our HF model:

{
Ẋ(t) = F(X(t),u(t)), t ∈ (0, T]

X(0) = X0

y(t) = G(X(t)), t ∈ (0, T],

(1)

where F : RN ×RNu → RN , G : RN → RNy and where X(t) represents the HF state of the system
and can be either finite-dimensional, for ODE models (i.e. X(t) ∈ RN), or infinite-dimensional,
e.g. for PDE models. We notice that (1) is not the most general form that we can face: indeed the
evolution equation can be given in implicit form. However let us stick to this form just to illustrate
the concept.

Most of Model Order Reduction (MOR) methods for time-dependent problems provide a re-
duced model in the following form

{
ẋ(t) = f(x(t),u(t)), t ∈ (0, T]

x(0) = x0

ỹ(t) = g(x(t)), t ∈ (0, T],

(2)

where x(t), the reduced-order state, belongs to a lower dimensional space Rn (typically with
n� N) and the functions f : Rn × RNu → Rn and g : Rn → RNy can be evaluated with a smaller
computational effort than F and G in Eq. (1). Notice that, in several cases, the knowledge of
the evolution of the full-order state X(t) is not essential since the user may be interested in just
one or a few output quantities, represented by y(t). Should the reduced model (2) be able of
reliably reproduce the input-output map u → y, it could be employed in place of the HF model
(1), hopefully with a considerable gain in terms of computational resources and simulation time.
We here denote by ỹ(t) the output of the reduced model, which generally differs from that of the
HF model y(t).

MOR can be model-based or data-driven (Antoulas 2005; Benner, Gugercin, and Willcox 2015;
Peherstorfer, Gugercin, and Willcox 2017; Peherstorfer and Willcox 2015a,b). With the first
strategy, Eq. (1) itself is the starting point to derive its reduced version (2). With data-driven
approaches instead, the reduced model is built upon a collection of input-output pairs, through
which the dynamics of the system is inferred. The advantages of model-based approaches are
that, often, the reduced model inherits structural properties (e.g. stability) from the HF model;
moreover, the underlying HF system structure provides the base for deriving error estimates,
hence error certification. Unfortunately, an equation in the form of (1) is not always available to
express the dynamics of the HF model, which may be accessible only through input-output data.
This is the case, for instance, when the system dynamics is available only through experimental
measurements, either in the time domain or in the frequency domain (i.e. through samples of the
transfer function, in the case of a linear system), or when the HF system is accessible through the
simulations of a black-box code. On the other hand, even when the HF model is available, the
implementation of model-based MOR into existing codes may not be straightforward. Data-driven
MOR, instead, thanks to its black-box approach, is endowed with a non-intrusive nature and can
thus be applied even when the HF model is not directly accessible.

1.1 Model-based MOR

The most popular approach to model-based MOR for dynamical systems consists in projection-
based methods (Antoulas 2005; Antoulas, Sorensen, and Gugercin 2000; Benner, Gugercin, and
Willcox 2015; Benner, Mehrmann, and Sorensen 2005). In this framework, the full-order state
space RN is approximated by a lower-dimensional subspace span(V), where V ∈ RN×n is the
matrix whose columns are the basis of the subspace. The full-order state is approximated as

1 The non time-invariant case (i.e. Ẋ(t) = F(X(t),u(t), t)) can be written in the form (1) by introducing a
further dependent variable XN+1, representing the time variable, with equation ẊN+1(t) = 1 and initial condition
XN+1(0) = 0. Moreover, Eq. (1) also comprises parametric differential equations, that is the case when u(t) is
constant in time and can thus be regarded as a parameter.

2

X(t) ' Vx(t) and the HF model equation is projected in the Galerkin (or Petrov-Galerkin) sense,
by left multiplying it by VT (or by another matrix WT , respectively):

{
ẋ(t) = WTF(Vx(t),u(t)), t ∈ (0, T]

x(0) = WTX0

ỹ(t) = G(Vx(t)), t ∈ (0, T],

(3)

This is equivalent to imposing orthogonality of the HF residual to span(V) (or span(W)). Various
projection-based methods differ on the selection procedure of the bases for V and W.

When the HF model (1) is linear in the state X, the Moment-Matching approach (or Padé
approximation) consists in building V and W in such a way that the associated transfer function
interpolates, up to a desired order, the first few moments of the full-order transfer function for a
given frequency (Bai 2002; Baur et al. 2011; Freund 2003). The Balanced-Truncation approach
applies in the linear case too: it consists in neglecting the states corresponding to the smallest
Hankel singular values, which measure the relevance of each state in terms of both reachability
and observability (Antoulas 2005; Moore 1981). Proper Orthogonal Decomposition (POD), whose
original concept dates back to Pearson 1901, was developed by Sirovich in 1987 (see Sirovich
1987) and it is tightly related to Principal Component Analysis (PCA, see Hotelling 1933) and to
Karhunen-Loève expansion, also known as Hotelling transform in stochastic process theory (Loeve
1978). The POD approach consists in collecting a set of snapshots of the full-order state X (i.e.
solutions computed at different times for different input values) and in building a basis by selecting
the left singular vectors of the snapshot matrix corresponding to the largest singular values, which
can be computed through Singular Value Decomposition (SVD) of the snapshot matrix itself. Such
basis is optimal in the sense that it minimizes the least-square error of snapshot reconstruction
(Antoulas 2005). The use of POD has gained a huge popularity in the PDE framework, where
the POD Galerkin projection-based approach represents one of the two classical forms of the
Reduced Basis (RB) method, the other one being based on the greedy algorithm to generate the
snapshots (see e.g. Fink and Rheinboldt 1983; Hesthaven, Rozza, and Stamm 2016; Peterson 1989;
Prud’Homme et al. 2002; Quarteroni, Manzoni, and Negri 2015).

The effectiveness of projection-based MOR relies in the possibility of performing an offline/online
decoupling of the projection. Such decoupling is straightforward in the case of linear models with
affine dependence of F on the input u since the algebraic structures (matrices and vectors) de-
scribing the reduced model can be precomputed offline (i.e. during the construction of the reduced
model itself) by projection of the full-order algebraic structures (Benner, Mehrmann, and Sorensen
2005; Quarteroni, Manzoni, and Negri 2015); these do not need to be accessible in the online phase
(i.e. during the actual numerical simulation of the reduced model). In the nonlinear case and/or
with non-affine input dependence the offline and online phases cannot be decoupled in principle,
and the full-order right-hand side F should be evaluated at each time step of the online phase,
thus undermining the attempt to reduce the complexity of the model. To overcome this issue, the
nonlinear dependence on either the state, the input or both is typically replaced by affine approxi-
mations by employing techniques such as the empirical interpolation method, EIM (Barrault et al.
2004; Maday et al. 2007), the discrete empirical interpolation method, DEIM (Chaturantabut and
Sorensen 2010; Drohmann, Haasdonk, and Ohlberger 2012), its matrix version MDEIM (Negri,
Manzoni, and Amsallem 2015) and the gappy POD reconstruction (Everson and Sirovich 1995).

In Lee and Carlberg 2018 the authors proposed a projection-based MOR technique, where
the system is projected into a nonlinear manifold, which is computed by means of convolutional
autoencoders from deep learning.

Besides projection-based methods, another class of model-based MOR techniques is that of
hierarchical surrogates, that is to say models derived, starting from the HF one, under simplified
physical assumptions, simplified geometries or coarser computational grids. While this approach is
ubiquitous in several applications, we just limit to mention a few in different fields, e.g. Alexandrov
et al. 2001; Hackbusch 1979; Quarteroni and Veneziani 2003; Regazzoni, Dedè, and Quarteroni
2018. Most methods in this category are dependent on the class of differential problem that
describes the phenomenon or are tailored to a specific model.

3

1.2 Data-driven MOR

In the Loewner framework, whose original ideas date back to Löwner 1934, a linear reduced model
is derived starting from transfer function measurements at a collection of interpolation points, either
in left or right tangential directions (i.e. by left or right multiplying the transfer function matrix by
the vector corresponding to the tangential direction). The reduced model matrices and arrays are
computed in such a way that the reduced model transfer function interpolates the full-order one out
the interpolation points and in the tangential directions (see Lefteriu and Antoulas 2010; Mayo and
Antoulas 2007). In Peherstorfer, Gugercin, and Willcox 2017 the Loewner framework has been
extended to derive reduced models from time-domain data, instead of frequency-domain data.
Although the Loewner framework only applies to linear models, it has recently been extended
to bilinear (i.e. independently linear in the state and in the input) models (Antoulas, Gosea,
and Ionita 2016), quadratic-bilinear models (Gosea and Antoulas 2015) and to analytic nonlinear
models with affine input dependence. This has been made possible by rewriting models with
analytic nonlinearities in the state as quadratic-bilinear models (increasing however the size of the
original model, see Gu 2011).

The orthonormal vector fitting (OVF) method, suitable for linear systems, is another frequency-
domain approach. Starting from transfer function data samples, OVF approximates the transfer
function through orthonormal rational functions, which enhance numerical stability in the identi-
fication of the approximation coefficients (Deschrijver and Dhaene 2005; Deschrijver, Haegeman,
and Dhaene 2007).

Kriging, originally developed in the field of geosciences (Krige 1951), also known as Gaussian
Process (GP) regression, is widely used to perform MOR for nonlinear models in the steady-state
case (Menafoglio, Secchi, and Dalla Rosa 2013; Rasmussen 2004). It is a regression method which
employs, as prior for the outcome of a function, a Gaussian Process whose covariance function
depend on so–called hyperparameters, tuned according to a maximum likelihood principle. This
technique has been extended to the dynamical case in Hernandez and Gallivan 2008 under the
name of dynamic mapping kriging (DMK), where the authors, by considering the discrete time
version of the evolution equation (1) (i.e. xk+1 = f(xk,uk)), perform kriging on the function f
starting from sample data for several (x,u) pairs.

In Brunton, Proctor, and Kutz 2016 the authors propose, under the name of Sparse Identi-
fication of Nonlinear Dynamics (SINDy), a technique to infer a model for a dynamical system
starting from measurements of (x(t),u(t), ẋ(t)) tuples. This technique, under the assumption that
f depends just on a few combinations of the inputs (such as linear combinations, products, and
trigonometric functions), seeks a sparse solution for the coefficients of a predetermined collection
of linear and nonlinear terms.

Despite they can be applied to nonlinear systems, both DMK and SINDy techniques require
the full-order state of the model to be accessible and, most of all, do not perform any reduction in
the state dimension.

The method proposed in Guo and Hesthaven 2019 represents an intermediate approach between
model-based and data-driven ones, by combining the RB method with GP regression. In particular
the authors build a reduced basis by POD of a collection of snapshots collected by the HF solution
of time-dependent parametric differential equations; then, by GP regression, they approximate the
map from the parameters and the time instant to the reduced basis coefficients of the solution.
We notice that this method, however, is restricted to parametric differential equations (i.e. when
u(t) is constant in time) and cannot be easily extended to the case of models with time-dependent
inputs.

1.3 Learning models from data

As mentioned before, data-driven MOR, due to its black-box nature, can also be applied when
the HF model for the state X is not accessible, or may not fit in known families of mathematical
models: in practice, when one is unable to explicitly build a model or may not be interested
in building it. This is the case when a physical system is accessible through measurements and
one tries to identify the underlying law linking the input-output pairs. This task is commonly
known in the field of control theory as System Identification, SI (see e.g. Keesman 2011; Ljung
1998). Models in the form (2) are known in the SI field as internal-dynamics or state-space models,

4

whereas the most commonly treated form in the SI field is that of external- dynamics models (see
NARX/NARMAX models, Nelles 2013), i.e. discrete time models in the form

ŷk+1 = f(yk,yk−1, . . . ,yk−p,uk,uk−1, . . . ,uk−q),

where the prediction for the next output ŷk+1 depend on the value of the previous p + 1 output
measurements {ŷj}k−1

j=k−p and the previous q+1 inputs {ûj}kj=k−q. However, models of this family
are designed for online identification and, most of all, for online predictions: the model should be
fed with the measured output at previous iterations, so that the true output should be available
not only at the identification (or training/offline) stage, but also at the prediction (online) stage.
However, we are looking here for a model that can be used in a stand-alone way in the online phase,
once an offline training phase has been carried out. We notice that the use of Artificial Neural
Networks in the context of nonlinear SI is quite popular (Narendra and Parthasarathy 1990, 1992;
Nelles 2013), even if their application is limited, up to our knowledge, to online identification and
prediction of discrete time systems.

In some recent works the authors have developed learning machines, either based on Gaussian
Processes (Raissi and Karniadakis 2018; Raissi, Perdikaris, and Karniadakis 2017a) or Artificial
Neural Networks (Raissi, Perdikaris, and Karniadakis 2017b,c, 2019), for data-driven solution and
data-driven discovery of PDEs. However, the learning machine must have knowledge of the form
of the equations that generated the observed data. This technique can be applied to linear or
nonlinear parametric PDEs, where the parameters of the PDE (e.g. diffusion coefficients, reaction
coefficients, etc.) are unknown.

In Raissi, Perdikaris, and Karniadakis 2018 the authors make use of ANNs to perform data-
driven discovery of nonlinear dynamical systems. In particular, they train the ANN to minimize the
residuals of a given multi-step time-stepping scheme (such as Adams-Bashforth or BDF schemes)
on a collection of available snapshots of the system state {X(tk)}Mk=1. However, this approach, like
DMK and SINDy techniques, requires the full-order state X to be accessible and, moreover, does
not perform any dimensionality reduction of the state space.

In San and Maulik 2018 the authors have used ANNs, in combination with projection-based
MOR for time-dependent models, to approximate the effect of the discarded modes on the retained
ones. In Freno and Carlberg 2018; Trehan, Carlberg, and Durlofsky 2017 the authors have used
machine-learning techniques to model the error of projection-based reduced model of parametrized
nonlinear dyanmical systems.

1.4 Original contributions and outline

In this work we address the problem of data-driven MOR for nonlinear dynamical systems (which
can be interpreted, as previously noticed, as a nonlinear SI problem), where we suppose to have
no direct access either to the HF model (that is F and G in Eq. (1)), nor to full-order state
observations X(t), but only to input-output pairs (u(t),y(t)). This task is remarkably hard since
we aim at the same time at (1) reconstructing the internal state of the system through its reduced
description x(t) without the possibility of observing the true internal state of the system X(t)
and (2) finding a model for the dynamics of x(t) itself. We notice that the reconstruction of the
system state through x(t) is not the final goal, but it is just instrumental to reconstruction the
input-output map u→ y.

We proceed by setting the problem in an abstract form, where we look for the best-approximation
of the HF model into a class of simpler models (i.e. the class of reduced models with a prescribed
level of complexity). This is an optimization problem, where the unknown is the model itself. No-
ticeably, we need to carefully select the class of candidate models and to find a suitable represen-
tation for the models in order to derive an optimization algorithm to solve the best-approximation
problem. Because of their capacity to approximate any continuous function with a desired level of
accuracy (see Cybenko 1989) and their ability to learn from data, we represent the model right-
hand side f in (2) through an Artificial Neural Network (ANN), which we train in such a way that
it learns from input-output pairs the underlying physics.

In this paper we introduce a general framework which serves multiple purposes (see Fig. 1):

• Building surrogates of time-dependent differential models, which allow for fast evaluations
and are suitable for multi-query problems.

5

High Fidelity
model

Reduced
model

1

Multi-query Dimensional
reduction

Model
learning

2 3

1
2

3

OBJECTIVES

1 2

Data-driven
MOR

Model-based
MOR

u(t)
<latexit sha1_base64="TxGqHaavyydidWWGR1WnCAqpZQk=">AAAB83icbVDLSsNAFL2pr1pfVZeCDBahbkriRldScOOygn1AE8pkOmmHTiZhHkIJ/Q2huLCIW3/GnX/jpO1CWw8MHM65l3vmhClnSrvut1PY2Nza3inulvb2Dw6PyscnLZUYSWiTJDyRnRArypmgTc00p51UUhyHnLbD0X3ut5+pVCwRT3qc0iDGA8EiRrC2ku/HWA/DCJmqvuqVK27NnQOtE29JKvXz6XQGAI1e+cvvJ8TEVGjCsVJdz011kGGpGeF0UvKNoikmIzygXUsFjqkKsnnmCbq0Sh9FibRPaDRXf29kOFZqHId2Ms+oVr1c/M/rGh3dBhkTqdFUkMWhyHCkE5QXgPpMUqL52BJMJLNZERliiYm2NZVsCd7ql9dJ67rmuTXv0bZxBwsU4QwuoAoe3EAdHqABTSCQwgu8wcwxzqvz7nwsRgvOcucU/sD5/AEeDZNC</latexit><latexit sha1_base64="122zAY2SzHjk95pweJHFNQzkkxo=">AAAB83icbVDLSgMxFL3js9ZX1aUgwSLUTZlxoyspuHFZwT6gM5RMmmlDM5khuSOU0t8Q1IUibv0Zd/6NmbYLbT0QOJxzL/fkhKkUBl3321lZXVvf2CxsFbd3dvf2SweHTZNkmvEGS2Si2yE1XArFGyhQ8naqOY1DyVvh8Cb3Ww9cG5GoexylPIhpX4lIMIpW8v2Y4iCMSFbB826p7FbdKcgy8eakXDt5yvFc75a+/F7CspgrZJIa0/HcFIMx1SiY5JOinxmeUjakfd6xVNGYm2A8zTwhZ1bpkSjR9ikkU/X3xpjGxozi0E7mGc2il4v/eZ0Mo6tgLFSaIVdsdijKJMGE5AWQntCcoRxZQpkWNithA6opQ1tT0ZbgLX55mTQvqp5b9e5sG9cwQwGO4RQq4MEl1OAW6tAABik8wiu8OZnz4rw7H7PRFWe+cwR/4Hz+AHtKlQc=</latexit><latexit sha1_base64="122zAY2SzHjk95pweJHFNQzkkxo=">AAAB83icbVDLSgMxFL3js9ZX1aUgwSLUTZlxoyspuHFZwT6gM5RMmmlDM5khuSOU0t8Q1IUibv0Zd/6NmbYLbT0QOJxzL/fkhKkUBl3321lZXVvf2CxsFbd3dvf2SweHTZNkmvEGS2Si2yE1XArFGyhQ8naqOY1DyVvh8Cb3Ww9cG5GoexylPIhpX4lIMIpW8v2Y4iCMSFbB826p7FbdKcgy8eakXDt5yvFc75a+/F7CspgrZJIa0/HcFIMx1SiY5JOinxmeUjakfd6xVNGYm2A8zTwhZ1bpkSjR9ikkU/X3xpjGxozi0E7mGc2il4v/eZ0Mo6tgLFSaIVdsdijKJMGE5AWQntCcoRxZQpkWNithA6opQ1tT0ZbgLX55mTQvqp5b9e5sG9cwQwGO4RQq4MEl1OAW6tAABik8wiu8OZnz4rw7H7PRFWe+cwR/4Hz+AHtKlQc=</latexit>

<latexit sha1_base64="122zAY2SzHjk95pweJHFNQzkkxo=">AAAB83icbVDLSgMxFL3js9ZX1aUgwSLUTZlxoyspuHFZwT6gM5RMmmlDM5khuSOU0t8Q1IUibv0Zd/6NmbYLbT0QOJxzL/fkhKkUBl3321lZXVvf2CxsFbd3dvf2SweHTZNkmvEGS2Si2yE1XArFGyhQ8naqOY1DyVvh8Cb3Ww9cG5GoexylPIhpX4lIMIpW8v2Y4iCMSFbB826p7FbdKcgy8eakXDt5yvFc75a+/F7CspgrZJIa0/HcFIMx1SiY5JOinxmeUjakfd6xVNGYm2A8zTwhZ1bpkSjR9ikkU/X3xpjGxozi0E7mGc2il4v/eZ0Mo6tgLFSaIVdsdijKJMGE5AWQntCcoRxZQpkWNithA6opQ1tT0ZbgLX55mTQvqp5b9e5sG9cwQwGO4RQq4MEl1OAW6tAABik8wiu8OZnz4rw7H7PRFWe+cwR/4Hz+AHtKlQc=</latexit><latexit sha1_base64="evLvsKjy5g0g94B0Ue/gSEDZbJ8=">AAAB83icbVC7SgNBFL0bXzG+opY2g0GITdi10UoCNpYRzAOyS5idzCZDZh/M3BFCyG/YWChi68/Y+TfOJlto4oGBwzn3cs+cMJNCo+t+O6WNza3tnfJuZW//4PCoenzS0alRjLdZKlPVC6nmUiS8jQIl72WK0ziUvBtO7nK/+8SVFmnyiNOMBzEdJSISjKKVfD+mOA4jYup4OajW3Ia7AFknXkFqUKA1qH75w5SZmCfIJNW677kZBjOqUDDJ5xXfaJ5RNqEj3rc0oTHXwWyReU4urDIkUarsS5As1N8bMxprPY1DO5ln1KteLv7n9Q1GN8FMJJlBnrDlochIginJCyBDoThDObWEMiVsVsLGVFGGtqaKLcFb/fI66Vw1PLfhPbi15m1RRxnO4Bzq4ME1NOEeWtAGBhk8wyu8OcZ5cd6dj+VoySl2TuEPnM8fKjuREg==</latexit>

y(t)
<latexit sha1_base64="PISdxfBNvNjTk7qj8t2LVjALJ/g=">AAAB83icbVDLSgNBEOyNrxhfUY+CDAYhXsKuFz1JwIvHCOYB2SXMTmaTIbMPZnqFsOQ3hODBIF79GW/+jbNJDppYMFBUddM15SdSaLTtb6uwsbm1vVPcLe3tHxwelY9PWjpOFeNNFstYdXyquRQRb6JAyTuJ4jT0JW/7o/vcbz9zpUUcPeE44V5IB5EIBKNoJNcNKQ79gIyreNUrV+yaPQdZJ86SVOrn0+kMABq98pfbj1ka8giZpFp3HTtBL6MKBZN8UnJTzRPKRnTAu4ZGNOTay+aZJ+TSKH0SxMq8CMlc/b2R0VDrceibyTyjXvVy8T+vm2Jw62UiSlLkEVscClJJMCZ5AaQvFGcox4ZQpoTJStiQKsrQ1FQyJTirX14nreuaY9ecR9PGHSxQhDO4gCo4cAN1eIAGNIFBAi/wBjMrtV6td+tjMVqwljun8AfW5w8kKZNG</latexit><latexit sha1_base64="v20iRLBp6PCqJfh/RWnBfVIAEmA=">AAAB83icbVDLSsNAFL3xWeur6lKQwSLUTUnc6EoKblxWsA9oQplMJ+3QyYOZGyGE/oagLhRx68+482+ctF1o64GBwzn3cs8cP5FCo21/Wyura+sbm6Wt8vbO7t5+5eCwreNUMd5isYxV16eaSxHxFgqUvJsoTkNf8o4/vin8zgNXWsTRPWYJ90I6jEQgGEUjuW5IceQHJKvheb9Stev2FGSZOHNSbZw8FXhu9itf7iBmacgjZJJq3XPsBL2cKhRM8knZTTVPKBvTIe8ZGtGQay+fZp6QM6MMSBAr8yIkU/X3Rk5DrbPQN5NFRr3oFeJ/Xi/F4MrLRZSkyCM2OxSkkmBMigLIQCjOUGaGUKaEyUrYiCrK0NRUNiU4i19eJu2LumPXnTvTxjXMUIJjOIUaOHAJDbiFJrSAQQKP8ApvVmq9WO/Wx2x0xZrvHMEfWJ8/gWaVCw==</latexit><latexit sha1_base64="v20iRLBp6PCqJfh/RWnBfVIAEmA=">AAAB83icbVDLSsNAFL3xWeur6lKQwSLUTUnc6EoKblxWsA9oQplMJ+3QyYOZGyGE/oagLhRx68+482+ctF1o64GBwzn3cs8cP5FCo21/Wyura+sbm6Wt8vbO7t5+5eCwreNUMd5isYxV16eaSxHxFgqUvJsoTkNf8o4/vin8zgNXWsTRPWYJ90I6jEQgGEUjuW5IceQHJKvheb9Stev2FGSZOHNSbZw8FXhu9itf7iBmacgjZJJq3XPsBL2cKhRM8knZTTVPKBvTIe8ZGtGQay+fZp6QM6MMSBAr8yIkU/X3Rk5DrbPQN5NFRr3oFeJ/Xi/F4MrLRZSkyCM2OxSkkmBMigLIQCjOUGaGUKaEyUrYiCrK0NRUNiU4i19eJu2LumPXnTvTxjXMUIJjOIUaOHAJDbiFJrSAQQKP8ApvVmq9WO/Wx2x0xZrvHMEfWJ8/gWaVCw==</latexit>

<latexit sha1_base64="v20iRLBp6PCqJfh/RWnBfVIAEmA=">AAAB83icbVDLSsNAFL3xWeur6lKQwSLUTUnc6EoKblxWsA9oQplMJ+3QyYOZGyGE/oagLhRx68+482+ctF1o64GBwzn3cs8cP5FCo21/Wyura+sbm6Wt8vbO7t5+5eCwreNUMd5isYxV16eaSxHxFgqUvJsoTkNf8o4/vin8zgNXWsTRPWYJ90I6jEQgGEUjuW5IceQHJKvheb9Stev2FGSZOHNSbZw8FXhu9itf7iBmacgjZJJq3XPsBL2cKhRM8knZTTVPKBvTIe8ZGtGQay+fZp6QM6MMSBAr8yIkU/X3Rk5DrbPQN5NFRr3oFeJ/Xi/F4MrLRZSkyCM2OxSkkmBMigLIQCjOUGaGUKaEyUrYiCrK0NRUNiU4i19eJu2LumPXnTvTxjXMUIJjOIUaOHAJDbiFJrSAQQKP8ApvVmq9WO/Wx2x0xZrvHMEfWJ8/gWaVCw==</latexit><latexit sha1_base64="w6YZYqKFJ9l3hStcF+fcS3iM6Y0=">AAAB83icbVDLSsNAFL2pr1pfVZduBotQNyVxoyspuHFZwT6gCWUynbRDJw9mboQQ+htuXCji1p9x5984abPQ1gMDh3Pu5Z45fiKFRtv+tiobm1vbO9Xd2t7+weFR/fikp+NUMd5lsYzVwKeaSxHxLgqUfJAoTkNf8r4/uyv8/hNXWsTRI2YJ90I6iUQgGEUjuW5IceoHJGvi5ajesFv2AmSdOCVpQInOqP7ljmOWhjxCJqnWQ8dO0MupQsEkn9fcVPOEshmd8KGhEQ259vJF5jm5MMqYBLEyL0KyUH9v5DTUOgt9M1lk1KteIf7nDVMMbrxcREmKPGLLQ0EqCcakKICMheIMZWYIZUqYrIRNqaIMTU01U4Kz+uV10rtqOXbLebAb7duyjiqcwTk0wYFraMM9dKALDBJ4hld4s1LrxXq3PpajFavcOYU/sD5/ADBXkRY=</latexit>

u(t)
<latexit sha1_base64="TxGqHaavyydidWWGR1WnCAqpZQk=">AAAB83icbVDLSsNAFL2pr1pfVZeCDBahbkriRldScOOygn1AE8pkOmmHTiZhHkIJ/Q2huLCIW3/GnX/jpO1CWw8MHM65l3vmhClnSrvut1PY2Nza3inulvb2Dw6PyscnLZUYSWiTJDyRnRArypmgTc00p51UUhyHnLbD0X3ut5+pVCwRT3qc0iDGA8EiRrC2ku/HWA/DCJmqvuqVK27NnQOtE29JKvXz6XQGAI1e+cvvJ8TEVGjCsVJdz011kGGpGeF0UvKNoikmIzygXUsFjqkKsnnmCbq0Sh9FibRPaDRXf29kOFZqHId2Ms+oVr1c/M/rGh3dBhkTqdFUkMWhyHCkE5QXgPpMUqL52BJMJLNZERliiYm2NZVsCd7ql9dJ67rmuTXv0bZxBwsU4QwuoAoe3EAdHqABTSCQwgu8wcwxzqvz7nwsRgvOcucU/sD5/AEeDZNC</latexit><latexit sha1_base64="122zAY2SzHjk95pweJHFNQzkkxo=">AAAB83icbVDLSgMxFL3js9ZX1aUgwSLUTZlxoyspuHFZwT6gM5RMmmlDM5khuSOU0t8Q1IUibv0Zd/6NmbYLbT0QOJxzL/fkhKkUBl3321lZXVvf2CxsFbd3dvf2SweHTZNkmvEGS2Si2yE1XArFGyhQ8naqOY1DyVvh8Cb3Ww9cG5GoexylPIhpX4lIMIpW8v2Y4iCMSFbB826p7FbdKcgy8eakXDt5yvFc75a+/F7CspgrZJIa0/HcFIMx1SiY5JOinxmeUjakfd6xVNGYm2A8zTwhZ1bpkSjR9ikkU/X3xpjGxozi0E7mGc2il4v/eZ0Mo6tgLFSaIVdsdijKJMGE5AWQntCcoRxZQpkWNithA6opQ1tT0ZbgLX55mTQvqp5b9e5sG9cwQwGO4RQq4MEl1OAW6tAABik8wiu8OZnz4rw7H7PRFWe+cwR/4Hz+AHtKlQc=</latexit><latexit sha1_base64="122zAY2SzHjk95pweJHFNQzkkxo=">AAAB83icbVDLSgMxFL3js9ZX1aUgwSLUTZlxoyspuHFZwT6gM5RMmmlDM5khuSOU0t8Q1IUibv0Zd/6NmbYLbT0QOJxzL/fkhKkUBl3321lZXVvf2CxsFbd3dvf2SweHTZNkmvEGS2Si2yE1XArFGyhQ8naqOY1DyVvh8Cb3Ww9cG5GoexylPIhpX4lIMIpW8v2Y4iCMSFbB826p7FbdKcgy8eakXDt5yvFc75a+/F7CspgrZJIa0/HcFIMx1SiY5JOinxmeUjakfd6xVNGYm2A8zTwhZ1bpkSjR9ikkU/X3xpjGxozi0E7mGc2il4v/eZ0Mo6tgLFSaIVdsdijKJMGE5AWQntCcoRxZQpkWNithA6opQ1tT0ZbgLX55mTQvqp5b9e5sG9cwQwGO4RQq4MEl1OAW6tAABik8wiu8OZnz4rw7H7PRFWe+cwR/4Hz+AHtKlQc=</latexit>

<latexit sha1_base64="122zAY2SzHjk95pweJHFNQzkkxo=">AAAB83icbVDLSgMxFL3js9ZX1aUgwSLUTZlxoyspuHFZwT6gM5RMmmlDM5khuSOU0t8Q1IUibv0Zd/6NmbYLbT0QOJxzL/fkhKkUBl3321lZXVvf2CxsFbd3dvf2SweHTZNkmvEGS2Si2yE1XArFGyhQ8naqOY1DyVvh8Cb3Ww9cG5GoexylPIhpX4lIMIpW8v2Y4iCMSFbB826p7FbdKcgy8eakXDt5yvFc75a+/F7CspgrZJIa0/HcFIMx1SiY5JOinxmeUjakfd6xVNGYm2A8zTwhZ1bpkSjR9ikkU/X3xpjGxozi0E7mGc2il4v/eZ0Mo6tgLFSaIVdsdijKJMGE5AWQntCcoRxZQpkWNithA6opQ1tT0ZbgLX55mTQvqp5b9e5sG9cwQwGO4RQq4MEl1OAW6tAABik8wiu8OZnz4rw7H7PRFWe+cwR/4Hz+AHtKlQc=</latexit><latexit sha1_base64="evLvsKjy5g0g94B0Ue/gSEDZbJ8=">AAAB83icbVC7SgNBFL0bXzG+opY2g0GITdi10UoCNpYRzAOyS5idzCZDZh/M3BFCyG/YWChi68/Y+TfOJlto4oGBwzn3cs+cMJNCo+t+O6WNza3tnfJuZW//4PCoenzS0alRjLdZKlPVC6nmUiS8jQIl72WK0ziUvBtO7nK/+8SVFmnyiNOMBzEdJSISjKKVfD+mOA4jYup4OajW3Ia7AFknXkFqUKA1qH75w5SZmCfIJNW677kZBjOqUDDJ5xXfaJ5RNqEj3rc0oTHXwWyReU4urDIkUarsS5As1N8bMxprPY1DO5ln1KteLv7n9Q1GN8FMJJlBnrDlochIginJCyBDoThDObWEMiVsVsLGVFGGtqaKLcFb/fI66Vw1PLfhPbi15m1RRxnO4Bzq4ME1NOEeWtAGBhk8wyu8OcZ5cd6dj+VoySl2TuEPnM8fKjuREg==</latexit>

fast input-output evaluations

small dimension of state variables

1

2

Desired features:accurate, repeated solutions call for
unbearable computational cost

large (huge) dimension of state variables

the model is unknown or unidentified

1

2

3

Possible issues:

Set of
input-output pairs

ey(t)
<latexit sha1_base64="YQRQfYl3qayqm4qneNYC24FaQsI=">AAACAXicbVA9SwNBEJ2LXzF+RW0Um0URtAl3NmoXsLGMYFRIQtjbm9Mlex/szinhiAj+FRsLRWz9F3b+G/cSC018MPB4b4aZeX6qpCHX/XJKU9Mzs3Pl+crC4tLySnV17cIkmRbYFIlK9JXPDSoZY5MkKbxKNfLIV3jp904K//IWtZFJfE79FDsRv45lKAUnK3WrG+07GSBJFWDejjjd+CHrD/Zov1vdcWvuEGySeD9kp775AAUa3epnO0hEFmFMQnFjWp6bUifnmqRQOKi0M4MpFz1+jS1LYx6h6eTDDwZs1yoBCxNtKyY2VH9P5Dwyph/5trM40ox7hfif18ooPOrkMk4zwliMFoWZYpSwIg4WSI2CVN8SLrS0tzJxwzUXZEOr2BC88ZcnycVBzXNr3plN4xhGKMMWbMMeeHAIdTiFBjRBwD08wQu8Oo/Os/PmvI9aS87PzDr8gfPxDYvsl6I=</latexit><latexit sha1_base64="YQRQfYl3qayqm4qneNYC24FaQsI=">AAACAXicbVA9SwNBEJ2LXzF+RW0Um0URtAl3NmoXsLGMYFRIQtjbm9Mlex/szinhiAj+FRsLRWz9F3b+G/cSC018MPB4b4aZeX6qpCHX/XJKU9Mzs3Pl+crC4tLySnV17cIkmRbYFIlK9JXPDSoZY5MkKbxKNfLIV3jp904K//IWtZFJfE79FDsRv45lKAUnK3WrG+07GSBJFWDejjjd+CHrD/Zov1vdcWvuEGySeD9kp775AAUa3epnO0hEFmFMQnFjWp6bUifnmqRQOKi0M4MpFz1+jS1LYx6h6eTDDwZs1yoBCxNtKyY2VH9P5Dwyph/5trM40ox7hfif18ooPOrkMk4zwliMFoWZYpSwIg4WSI2CVN8SLrS0tzJxwzUXZEOr2BC88ZcnycVBzXNr3plN4xhGKMMWbMMeeHAIdTiFBjRBwD08wQu8Oo/Os/PmvI9aS87PzDr8gfPxDYvsl6I=</latexit><latexit sha1_base64="YQRQfYl3qayqm4qneNYC24FaQsI=">AAACAXicbVA9SwNBEJ2LXzF+RW0Um0URtAl3NmoXsLGMYFRIQtjbm9Mlex/szinhiAj+FRsLRWz9F3b+G/cSC018MPB4b4aZeX6qpCHX/XJKU9Mzs3Pl+crC4tLySnV17cIkmRbYFIlK9JXPDSoZY5MkKbxKNfLIV3jp904K//IWtZFJfE79FDsRv45lKAUnK3WrG+07GSBJFWDejjjd+CHrD/Zov1vdcWvuEGySeD9kp775AAUa3epnO0hEFmFMQnFjWp6bUifnmqRQOKi0M4MpFz1+jS1LYx6h6eTDDwZs1yoBCxNtKyY2VH9P5Dwyph/5trM40ox7hfif18ooPOrkMk4zwliMFoWZYpSwIg4WSI2CVN8SLrS0tzJxwzUXZEOr2BC88ZcnycVBzXNr3plN4xhGKMMWbMMeeHAIdTiFBjRBwD08wQu8Oo/Os/PmvI9aS87PzDr8gfPxDYvsl6I=</latexit>

<latexit sha1_base64="YQRQfYl3qayqm4qneNYC24FaQsI=">AAACAXicbVA9SwNBEJ2LXzF+RW0Um0URtAl3NmoXsLGMYFRIQtjbm9Mlex/szinhiAj+FRsLRWz9F3b+G/cSC018MPB4b4aZeX6qpCHX/XJKU9Mzs3Pl+crC4tLySnV17cIkmRbYFIlK9JXPDSoZY5MkKbxKNfLIV3jp904K//IWtZFJfE79FDsRv45lKAUnK3WrG+07GSBJFWDejjjd+CHrD/Zov1vdcWvuEGySeD9kp775AAUa3epnO0hEFmFMQnFjWp6bUifnmqRQOKi0M4MpFz1+jS1LYx6h6eTDDwZs1yoBCxNtKyY2VH9P5Dwyph/5trM40ox7hfif18ooPOrkMk4zwliMFoWZYpSwIg4WSI2CVN8SLrS0tzJxwzUXZEOr2BC88ZcnycVBzXNr3plN4xhGKMMWbMMeeHAIdTiFBjRBwD08wQu8Oo/Os/PmvI9aS87PzDr8gfPxDYvsl6I=</latexit><latexit sha1_base64="FjBgZ4jY/pO/eh/po31mBaauvW8=">AAACAXicbVA9SwNBEN2LXzF+RW0Em8UgxCbc2ahdwMYygvmAJIS9vblkyd4Hu3PKccTGv2JjoYit/8LOf+MmuUITHww83pthZp4bS6HRtr+twsrq2vpGcbO0tb2zu1feP2jpKFEcmjySkeq4TIMUITRRoIROrIAFroS2O76e+u17UFpE4R2mMfQDNgyFLzhDIw3KR70H4QEK6UHWCxiOXJ+mkyqeDcoVu2bPQJeJk5MKydEYlL96XsSTAELkkmnddewY+xlTKLiESamXaIgZH7MhdA0NWQC6n80+mNBTo3jUj5SpEOlM/T2RsUDrNHBN5/RIvehNxf+8boL+ZT8TYZwghHy+yE8kxYhO46CeUMBRpoYwroS5lfIRU4yjCa1kQnAWX14mrfOaY9ecW7tSv8rjKJJjckKqxCEXpE5uSIM0CSeP5Jm8kjfryXqx3q2PeWvBymcOyR9Ynz9l+pbJ</latexit>

{(buj(t), byj(t))}Ns

j=1
<latexit sha1_base64="HRvbls1tPGSj0dm6ZfiPwz5isoI=">AAACRnicbVA9axtBEJ1T4kRWnESOSzdLhEGBIO7S2I1BkCZVkMGyBLrLsbeak1ba+2B3LkEc97f8B9KkTpef4MaFjXHr1QcmsfJgmcd7M8zOi3IlDbnuH6f27PnOi5f13carvddv3jb3312YrNAC+yJTmR5G3KCSKfZJksJhrpEnkcJBNP+89AffURuZpee0yDFI+CSVsRScrBQ2A19hTH7JVrXt/5BjnHIq/YTTNIpZUYWzNn34yLacxdphvpaT6WP1q7CcnXrVt/JraKqw2XI77gpsm3gb0uoe3V52AaAXNn/740wUCaYkFDdm5Lk5BSXXJIXCquEXBnMu5nyCI0tTnqAJylUMFTuyypjFmbYvJbZS/54oeWLMIols5/IG89Rbiv/zRgXFJ0Ep07wgTMV6UVwoRhlbZsrGUqMgtbCECy3tX5mYcs0F2eQbNgTv6cnb5OJTx3M73plN4xjWqMMhvIc2eHAMXfgCPeiDgJ9wBTdw6/xyrp07537dWnM2MwfwD2rwAP27tDs=</latexit><latexit sha1_base64="52QQPy2+lDhBZ6xI/hRiGnt+YIs=">AAACRnicbVBNSxxBEK1ZNepqko05emkUYYWwzOSiF0EIAU9iwFVhZxx6emt2W3s+6K4xLMP8GP+Ed/EiHnPLT/DiQRGv9u6KJK4Pmnq8V0V1vShX0pDr/nVqU9MzH2bn5usLix8/fW58WTowWaEFtkWmMn0UcYNKptgmSQqPco08iRQeRqc/hv7hGWojs3SfBjkGCe+lMpaCk5XCRuArjMkv2ag2/d+yi31OpZ9w6kcxK6rwpEnr39iEMxg7zNey13+tfhWWJ1tedVzuhqYKG6tuyx2BTRLvhaxurz1c/Dy/udwLG3/8biaKBFMSihvT8dycgpJrkkJhVfcLgzkXp7yHHUtTnqAJylEMFVuzSpfFmbYvJTZS/50oeWLMIIls5/AG89Ybiu95nYLizaCUaV4QpmK8KC4Uo4wNM2VdqVGQGljChZb2r0z0ueaCbPJ1G4L39uRJcvC95bkt75dNYwPGmINlWIEmeLAB27ADe9AGAVdwC/fw4Fw7d86j8zRurTkvM1/hP9TgGetItmw=</latexit><latexit sha1_base64="52QQPy2+lDhBZ6xI/hRiGnt+YIs=">AAACRnicbVBNSxxBEK1ZNepqko05emkUYYWwzOSiF0EIAU9iwFVhZxx6emt2W3s+6K4xLMP8GP+Ed/EiHnPLT/DiQRGv9u6KJK4Pmnq8V0V1vShX0pDr/nVqU9MzH2bn5usLix8/fW58WTowWaEFtkWmMn0UcYNKptgmSQqPco08iRQeRqc/hv7hGWojs3SfBjkGCe+lMpaCk5XCRuArjMkv2ag2/d+yi31OpZ9w6kcxK6rwpEnr39iEMxg7zNey13+tfhWWJ1tedVzuhqYKG6tuyx2BTRLvhaxurz1c/Dy/udwLG3/8biaKBFMSihvT8dycgpJrkkJhVfcLgzkXp7yHHUtTnqAJylEMFVuzSpfFmbYvJTZS/50oeWLMIIls5/AG89Ybiu95nYLizaCUaV4QpmK8KC4Uo4wNM2VdqVGQGljChZb2r0z0ueaCbPJ1G4L39uRJcvC95bkt75dNYwPGmINlWIEmeLAB27ADe9AGAVdwC/fw4Fw7d86j8zRurTkvM1/hP9TgGetItmw=</latexit>

<latexit sha1_base64="52QQPy2+lDhBZ6xI/hRiGnt+YIs=">AAACRnicbVBNSxxBEK1ZNepqko05emkUYYWwzOSiF0EIAU9iwFVhZxx6emt2W3s+6K4xLMP8GP+Ed/EiHnPLT/DiQRGv9u6KJK4Pmnq8V0V1vShX0pDr/nVqU9MzH2bn5usLix8/fW58WTowWaEFtkWmMn0UcYNKptgmSQqPco08iRQeRqc/hv7hGWojs3SfBjkGCe+lMpaCk5XCRuArjMkv2ag2/d+yi31OpZ9w6kcxK6rwpEnr39iEMxg7zNey13+tfhWWJ1tedVzuhqYKG6tuyx2BTRLvhaxurz1c/Dy/udwLG3/8biaKBFMSihvT8dycgpJrkkJhVfcLgzkXp7yHHUtTnqAJylEMFVuzSpfFmbYvJTZS/50oeWLMIIls5/AG89Ybiu95nYLizaCUaV4QpmK8KC4Uo4wNM2VdqVGQGljChZb2r0z0ueaCbPJ1G4L39uRJcvC95bkt75dNYwPGmINlWIEmeLAB27ADe9AGAVdwC/fw4Fw7d86j8zRurTkvM1/hP9TgGetItmw=</latexit><latexit sha1_base64="B4MMFT+ZFD7Z+AVl8dteTgpxHc8=">AAACRnicbVBNSyNBEK3J6qrRXaMevTQGIcISZrzEiyB42ZMoGBUy49DTqUlaez7orlHCML9uL5697U/Yyx4U2et2PhA1Pmjq8V4V1fWiXElDrvvbqX1ZWPy6tLxSX1379n29sbF5YbJCC+yKTGX6KuIGlUyxS5IUXuUaeRIpvIxuj8f+5R1qI7P0nEY5BgkfpDKWgpOVwkbgK4zJL9mktvx72cchp9JPOA2jmBVVeNOivR9szhlNHeZrORi+Vr8Ky5tDr7ouT0JThY2m23YnYPPEm5EmzHAaNh79fiaKBFMSihvT89ycgpJrkkJhVfcLgzkXt3yAPUtTnqAJykkMFdu1Sp/FmbYvJTZR306UPDFmlES2c3yD+eiNxc+8XkHxQVDKNC8IUzFdFBeKUcbGmbK+1ChIjSzhQkv7VyaGXHNBNvm6DcH7ePI8udhve27bO3ObR51ZHMuwDTvQAg86cAQ/4RS6IOAX/IEneHYenL/Oi/Nv2lpzZjNb8A41+A/gs7Ht</latexit>

Figure 1: Model-based and data-driven MOR. The HF model can have three undesired features:
1© it may be computationally demanding, 2© it can have a high state dimension, 3© it may not be
accessible. A reduced model can be derived either directly from the HF model (model-based MOR),
or from input-output pairs generated by the HF model (data-driven MOR). The latter approach
allows to learn a model, in the case when the HF model is not accessible (see 3©). In both cases,
the reduced model represents a surrogate of the HF model allowing for fast evaluations, lowering
the computational burden in multi-query applications (see 1©), and features a low dimensional
state (see 2©).

• Reducing the dimensionality of the state variables of time-dependent differential models (e.g.
when a mathematical model needs to be solved virtually in each point of a computational
domain and the overall memory storage must be contained).

• Learning mathematical models from available input-output pairs.

This paper is structured as follows. In Sec. 2 we present our strategy, by rephrasing the model
reduction problem in terms of an optimization problem, for which we define the objective functional.
Then, in Sec. 3, we present the strategy employed to numerically find a solution of the optimization
problem. In particular, we show: (1) how the unknowns of the problem are discretized; (2) how
the time discretization is performed; (3) the optimization algorithm employed. Finally, in Sec. 4,
we show the obtained results and we analyse and critically discuss them.

2 Model reduction strategy

We start by giving a definition of model (in the way this is meant in this paper): an object which
maps time-dependent inputs into time-dependent outputs.

2.1 The dynamical model

By model we intend a general framework including either a physical model (like a natural phe-
nomenon or an engineering process) or a mathematical or numerical model, which associates a

6

time-dependent output to a time-dependent input. We consider a limited time interval [0, T] and
we denote by U ⊂ RNu and by Y ⊂ RNy the sets where the input u : [0, T] → U and the output
y : [0, T]→ Y take values, respectively. We denote by the term experiment the action of inputing
u(t) to the model and recording the corresponding output y(t) and by the term sample we refer
to the couple (u,y). For the sake of abstraction, we make the following minimal assumptions on
the model:

(A1) Time invariance: by denoting with y(t) the output obtained by starting at time t0 an
experiment with input u(t), the output of another experiment started at time t1 ≥ t0 with
input u(t− (t1− t0)) is y(t− (t1− t0)). Hence in the following we will consider, without loss
of generality, each experiment starting from the initial time t = t0 = 0.

(A2) Existence of an initial state: at time t = 0, for each experiment, the model is in the same
initial state, that is it always responds in the same way to a prescribed input. Otherwise,
the map u 7→ y would not be well defined.

(A3) Causality principle: The input-output relationship must be consistent with the arrow
of time, that is the output of the model can depend just on past values of the input and
not on future values. In other words, given two inputs u1 and u2, such that, for some t∗,
u1(t) = u2(t) for t ∈ [0, t∗], the corresponding outputs y1 and y2, must satisfy y1(t) = y2(t)
for t ∈ [0, t∗].

(A4) No input-output direct dependence: the output at time t depends just on the state of
the system at the same time, but not (directly) on the input at time t. As a consequence,
thanks to (A2), the output at time t = 0 will be the same for each experiment. Notice that
this assumption could be removed, by allowing g in (2) to depend also on u(t). However, for
the sake of simplicity, we will not consider this case in this work.

For simplicity, we consider the case when both the input and output are continuous functions in
time. Therefore, the model can be seen as a map ϕ : U → Y from the space of input signals
U = C0([0, T];U) to the space of output signals Y = C0([0, T];Y). Thanks to assumptions (A1)
and (A2) the map ϕ is well defined. Moreover, assumption (A3) can be written as

∀u1,u2 ∈ U ∀ t∗ ∈ [0, T] u1|[0,t∗] = u2|[0,t∗] =⇒ (ϕu1)|[0,t∗] = (ϕu2)|[0,t∗], (4)

where ϕu1 denotes the output y1 ∈ Y of the model when the input is u1 ∈ U (thus both u1 and
ϕu1 are functions of time) and (ϕu1)|[0,s] denotes the restriction of the output y1 to the time
interval [0, s]. On the other hand, assumption (A4) entails

∃y0 ∈ Y s.t. ∀u ∈ U (ϕu)(0) = y0, (5)

where (ϕu)(0) denotes the output y ∈ Y of the model – corresponding to the time-dependent input
u ∈ U – evaluated at time t = 0 (i.e. y(0)). Thus, we define the set of all the models associated
with the input and output sets U and Y as

Φ = {ϕ : U → Y s.t. (4) and (5) hold} ,
endowed with the norm of the supremum:

‖ϕ‖Φ = sup
u∈U
‖ϕu‖Y = sup

u∈U
sup
t∈[0,T]

‖(ϕu)(t)‖Y .

2.2 Building a reduced model

We perform Ns experiments with the HF model and we collect a set of Ns input-output pairs:

{(ûj , ŷj)}j=1,...,Ns
⊂ U × Y. (6)

Then we select a subset of candidate models, which we denote by Φ̂ ⊆ Φ, and we consider the
problem of finding the best-approximation of the HF model, in the least-squares sense, in the
subset Φ̂ :

ϕ∗ = argmin
ϕ∈Φ̂

J(ϕ), (7)

7

where the objective functional is given by

J(ϕ) =
1

2

Ns∑

j=1

ˆ T

0

|ŷj(t)− (ϕûj) (t)|2dt. (8)

We notice that, when the measures of the output ŷj are affected by gaussian noise, the least-
square best-approximation corresponds to the maximum-likelihood estimation (see e.g. Casella
and Berger 2002).

The next step is the choice of Φ̂ ⊆ Φ, the subset of candidate models. A possible approach is that
of directly approximating the input-output map u→ y in the time domain (i.e. from U to Y), e.g.
by means of an ANN which takes as an input a set {u(t0),u(t1), . . . ,u(tM)} of values associated to
a collection of time instants and returns the corresponding output values {y(t0),y(t1), . . . ,y(tM)}.
However, working on input and outputs as signals (i.e. in the spaces U and Y) would clearly lead to
a remarkably large-size problem, potentially making the learning process unaffordable because of
its computational complexity. Thus, we pursue a different approach: by exploiting the structure of
the elements in Φ, which is based on assumptions (A1)–(A4), we restrict the investigation to input-
output maps described by systems of ODEs. This dramatically reduces the size of the problem, as
we show in the following.

2.3 Models described by systems of ODEs

We refer now to the specific class of models, in the framework of Sec 2.1, which are governed by a
system of ODEs in the form of (2). Such class represents a subset of Φ, as we will show. First, we
notice that, given two functions f ∈ Fn := {f ∈ C0(Rn × U ;Rn), which are Lipschitz continuous
in x uniformly in u} and g ∈ Gn := C0(Rn;Y) and a vector x0 ∈ Xn ≡ Rn (where the subscript n
stands for the number of internal reduced states), the system (2) identifies a unique map from U
to Y. We denote by ϕf ,g,x0

such map.

Proposition 1. For each f ∈ Fn, g ∈ Gn and x0 ∈ Xn, we have ϕf ,g,x0
∈ Φ, that is the input-

output map represented by (2) is a model according to the definition of Sec. 2.1.

Proof. Thanks to the Picard-Lindelöf theorem, Eq. (2) has a unique solution. Thus, the map
ϕf ,g,x0

is well defined. Moreover, it is continuous from U to Y, thus the norm in Φ is finite.
Property (4) is easy to be checked, while (5) holds by setting y0 = g(x0).

Moreover, given the triplet F̂ ⊆ Fn, Ĝ ⊆ Gn and X̂ ⊆ Xn, we define the following subset of
models:

ΦF̂,Ĝ,X̂ =
{
ϕf ,g,x0

∈ Φ s.t. f ∈ F̂ ,g ∈ Ĝ,x0 ∈ X̂
}
⊂ Φ. (9)

We have the following result, which states that the expressive power of the class of models with n
state variables grows as n increases:

Proposition 2. The classes of models with n internal states are nested, that is:

ΦFn,Gn,Xn ⊆ ΦFm,Gm,Xm ∀n ≤ m.

Proof. Given a model in the form Eq. (2) with n state variables, by adding m−n further variables
which affect neither the dynamics of the other variables, nor the output, we obtain a model with
m state variables, still representing the same input-output map of the previous model.

Moreover, we have the following result.

Proposition 3. Let U be compact. Suppose that the subsets F̂ ⊆ Fn and Ĝ ⊆ Gn are such that the
restrictions of their functions to compact sets are dense in the full spaces, that is for each compact
set E ⊂ Rn we have:

∀ ε > 0 ∀ f ∈ Fn ∃ f̂ ∈ F̂ ∀x ∈ E,u ∈ U s.t.
∣∣∣f(x,u)− f̂(x,u)

∣∣∣ ≤ ε, (10)

∀ ε > 0 ∀g ∈ Gn ∃ ĝ ∈ Ĝ ∀x ∈ E s.t. |g(x)− ĝ(x)| ≤ ε. (11)

8

Then, the subset of models ΦF̂,Ĝ,Xn is dense in the model space ΦFn,Gn,Xn , that is:

∀ ε > 0 ∀ϕ ∈ ΦFn,Gn,Xn ∃ ϕ̂ ∈ ΦF̂,Ĝ,Xn s.t. ‖ϕ− ϕ̂‖Φ ≤ ε. (12)

Proof. By definition, there exists f ∈ Fn, g ∈ Gn and x0 ∈ Xn such that ϕ = ϕf ,g,x0
. First, we

show that the state x of the HF model ϕ is bounded. We have:

d

dt

(
1

2
|x(t)|2

)
= ẋ(t) · x(t) = f(x(t),u(t)) · x(t) ≤ |f(x(t),u(t))| |x(t)|

≤ (|f(x(t),u(t))− f(x0,u(t))|+ |f(x0,u(t))|) |x(t)| .

By denoting by Lf the Lipschitz constant of f , we have |f(x(t),u(t))− f(x0,u(t))| ≤ Lf |x(t)− x0| ≤
Lf (|x(t)|+ |x0|). Moreover, as U is compact, we have |f(x0,u(t))| ≤ M for some finite M ∈ R.
Therefore, we have:

d

dt

(
1

2
|x(t)|2

)
≤ Lf |x(t)|2 + (Lf |x0|+M) |x(t)|

≤
(
Lf +

1

2

)
|x(t)|2 +

1

2
(Lf |x0|+M)

2
.

Using the Gronwall lemma we get:

|x(t)| ≤
√(
|x0|2 + (Lf |x0|+M)

2
T
)
e(2Lf+1)T =: R ∀t ∈ [0, T].

Thanks to (11), there exists ĝ ∈ Ĝ such that |g(x)− ĝ(x)| ≤ 1
2ε for x ∈ B2R, the closed ball of

radius 2R.
Moreover, being g continuous, by the Heine-Cantor theorem, it is also uniformly continuous on

the compact ball B2R, thus there exists some ε′ such that for any x1,x2 ∈ B2R, if |x1 − x2| ≤ ε′;
this implies that |g(x1)− g(x2)| ≤ 1

2ε.
We define the positive number:

ε′′ = min

{
ε′,

1

2
R

}(
Te(2Lf+1)T

)−1/2

.

Thanks to (10), there exists f̂ ∈ F̂ such that
∣∣∣f(x,u)− f̂(x,u)

∣∣∣ ≤ ε′′ for x ∈ B2R,u ∈ U .

Consider the model ϕ̂ = ϕf̂ ,ĝ,x0
, whose state is denoted by x̂(t). Let u ∈ U be a generic

input signal. Now, we show that the trajectory of the state x̂(t) is contained in B2R. Suppose by
contradiction that x̂(s) = 2R for some s ∈ [0, T], x̂(t) < 2R for t < s. Then, in the interval [0, s)
the discrepancy between the two states z(t) := x(t)− x̂(t) satisfies:

d

dt

(
1

2
|z(t)|2

)
= ż(t) · z(t) =

[
f(x(t),u(t))− f̂(x̂(t),u(t))

]
· z(t)

= |f(x(t),u(t))− f(x̂(t),u(t))| |z(t)|
+
∣∣∣f(x̂(t),u(t))− f̂(x̂(t),u(t))

∣∣∣ |z(t)|

≤ Lf |z(t)|2 + ε′′ |z(t)| ≤
(
Lf +

1

2

)
|z(t)|2 +

1

2
(ε′′)2.

(13)

By Gronwall inequality we get

|x(t)− x̂(t)| ≤ ε′′
√
Te(2Lf+1)T ≤ 1

2
R,

where the second inequality follows from the definition of ε′′. The, we have |x̂(t)| ≤ |x(t)− x̂(t)|+
|x(t)| ≤ 3

2R for t ∈ [0, s). Since |x̂(s)| = 2R, we reach a contradiction and we have proved that

9

the trajectory of x̂(t) is contained into B2R. Therefore, inequality (13) holds on the whole time
interval [0, T] and we conclude:

|x(t)− x̂(t)| ≤ ε′′
√
Te(2Lf+1)T ≤ ε′ t ∈ [0, T],

which entails |g(x(t))− g(x̂(t))| ≤ 1
2ε for t ∈ [0, T]. Finally, we have

|(ϕu)(t)− (ϕ̂u)(t)| = |g(x(t))− ĝ(x̂(t))|
≤ |g(x(t))− g(x̂(t))|+ |g(x̂(t))− ĝ(x̂(t))| ≤ ε

2
+
ε

2
= ε.

Proposition 3 states that if the subsets F̂ and Ĝ approximate in a suitable sense (see Eqs. (10)–

(11)) the spaces Fn and Gn respectively, the class of candidate models ΦF̂,Ĝ,Xn approximate the
space of models ΦFn,Gn,Xn with arbitrary accuracy.

We notice that by setting Φ̂ = ΦF̂,Ĝ,X̂ , the abstract problem (7) reads:

min
f∈F̂,g∈Ĝ,x0∈X̂

1
2

∑Ns

j=1

´ T
0
|ŷj(t)− g(xj(t))|2dt

s.t. ẋj(t) = f(xj(t), ûj(t)), t ∈ (0, T], j = 1, . . . , Ns

xj(0) = x0, j = 1, . . . , Ns,

(14)

We are thus addressing a least-squares minimization problem where the design variables are the
two functions f ∈ F̂ and g ∈ Ĝ and the vector x0 ∈ X̂ .

2.4 Non-uniqueness of the representation

We make the following important remarks:

Remark 1. Given a model ϕf ,g,x0
∈ ΦFn,Gn,Xn , its representation in terms of (f ,g,x0) may not be

unique. Indeed, by taking any invertible and sufficiently regular map h : Rn → Rn, let us consider
the change of variable x̃ = h(x) and define

f̃(x̃,u) = (∇h ◦ h−1)(x̃) f(h−1(x̃),u)

g̃(x̃) = g(h−1(x̃))

x̃0 = h(x0).

(15)

We have ϕf ,g,x0
= ϕf̃ ,g̃,x̃0

(i.e. the input-output map represented by the two models is equivalent).

As a particular case, for any α ∈ R \ {0}, we have that, with the transformation f̃(x̃,u) =

α f(x̃/α,u), g̃(x̃) = g(x̃/α), x̃0 = αx0, the triplets (f ,g,x0) and (f̃ , g̃, x̃0) identify the same
model.

We notice that, because of Remark 1, the best-approximation problem (7) might be ill-posed.

Indeed, if the spaces F̂ , Ĝ and X̂ are wide enough to contain both (f ,g,x0) and – according to (15)

– their equivalent counterparts (f̃ , g̃, x̃0), the solution of problem (7) may loose uniqueness in terms
of its (f ,g,x0) representation. This is certainly an issue since non-uniqueness can deteriorate the
performance of the optimization algorithm. Nevertheless, it may be seen also as an opportunity:
we can indeed contain the size of the spaces F̂ , Ĝ and X̂ by imposing specific constraints on the
solution to a priori choose a representative solution for a given class of equivalent solutions. In such
a way we can restrict the design space for the optimization problem without ruling out possible
solutions, thus reducing its complexity. We now show two possible ways of performing this task.

2.4.1 Partial disambiguation by constraining x0

Consider a model ϕf ,g,x0
∈ Φ. Consider then the (invertible) state transformation x̃ = h1(x) =

x− x0. By applying the transformation (15), we get an equivalent model ϕf̃ ,g̃,x̃0
, where f̃(x̃,u) =

f(x̃ + x0,u), g̃(x̃) = g(x̃ + x0) and x̃0 = 0. Thanks to this property, when we look for the

10

solution of the best-approximation problem (7) we can suppose, without loss of generality that

x0 = 0. This is equivalent to reducing the set of possible initial states to the singleton X̂ = {0},
or equivalently, to minimize the cost functional J under the constraint x0 = 0. The statement
of the best-approximation problem improves since the number of design variables decreases (the
design variables are now just f and g) and we have disambiguated among a number of equivalent
solutions, without ruling out possible solutions.

2.4.2 Partial disambiguation by constraining g and x0

Consequence of Remark 1 is that the state variables x are just auxiliary variables to track the
time evolution of the internal state of the model, not necessarily inferring a clear physical inter-
pretation. There is thus large freedom in their choice. Consider the case when n ≥ Ny: one could
possibly decide a priori to force the first Ny state variables x1, . . . , xNy

to coincide with the outputs
y1, . . . , yNy

. A natural question is then the following: given a model ϕf ,g,x0
, is it always possible to

rewrite it in an equivalent form such that the first Ny state variables coincide with the output itself?
If the answer is affirmative, then we can restrict ourselves to models such that g(x) is the function
extracting the first Ny component of a vector, which we denote by πNy (x) = (x1 , x2 , . . . , xNy

)T .
To answer this question, consider a model ϕf ,g,x0

∈ Φ and suppose that there exists a smooth

function q : Rn → Rn−Ny – we will address later the existence issue – such that h2(x) = (gT (x),qT (x))T

is invertible (where g(x) ∈ RNy , q(x) ∈ Rn−Ny and thus h2(x) ∈ Rn). In such a case, by applying
the transformation (15) with h2, we get the equivalent model ϕf̃ ,g̃,x̃0

where:

f̃(x̃,u) = (∇h2 ◦ h−1
2)(x̃) f(h−1

2 (x̃),u)

g̃(x̃) = πNy (x̃)

x̃0 = (gT (x0),qT (x0))T ,

(16)

for which the desired property, that the output is given by the first Ny state variables, holds. We
notice that, in the expression of the initial condition x̃0, we can substitute g(x0) = y0, which
is available from the measurements. Moreover, as in the previous case, we may think to set,
without loss of generality, q(x0) = 0 (this can be obtained by applying once again (15) with the
transformation h3(x) = h2(x) − (0T ,qT (x0))T). To summarize, we get a model in the following
form: {

ẋ(t) = f(x(t),u(t)), t ∈ (0, T]

x(0) = (yT0 ,0
T)T ,

(17)

where the state is written in the form x = (yT , zT)T , where z(t) are the other auxiliary variables.
We have not ruled out yet all the ambiguity since, being the output transparent to the hidden
variables, the latter can be still subject to invertible transformations which does not affect the
input-output map of the model; nonetheless, the size of design space has been dramatically reduced
since the unique design variable left is f . We notice that this reduction is afforded by setting
Ĝ = {πNy} and X̂ = {(yT0 ,0T)T }.

To summarize, we have thus shown that all the models admitting the existence of a function
q : Rn → Rn−Ny such that h2(x) = (gT (x),qT (x))T is invertible are in fact equivalent to a model
in the form of (17).

Clearly, this hypothesis is not fulfilled by any model ϕf ,g,x0
: if, for instance, the outputs

y1, . . . , yNy are linearly dependent, then h2 cannot be invertible. However, this case does not
have any practical interest since in such case the dimension of the output can be reduced. Hence,
assuming that the image of g spans an Ny-dimensional variety in Rn, it is reasonable that a function
q(x) such that h2(x) is (at least locally) invertible exists. Even if this cannot be rigorously proven
without the introduction of further technical assumptions, the message is that the constraint
g = πNy keeps virtually intact the capacity of the class of models to approximate a given HF
model. In Sec. 4.2 we will address numerically this issue.

2.5 The best-approximation problem

We will address both the cases considered in Sec. 2.4, namely:

11

1. X̂ = {0}, which we refer to as output-outside-the-state (the output is a function of the state,
but it is not part of the state);

2. Ĝ = {πNy} and X̂ = {(yT0 ,0T)T }, which we refer to as output-inside-the-state (the first Ny
state variables coincide with the output variables).

We notice that the second approach is available only for n ≥ Ny. In both cases, x0 is given and
thus it is not counted as a design variable. Therefore, the best-approximation problem, in the most
general case, consists of:

• Collecting the input-output observations (6) of the HF model to be approximated (i.e. to be
reduced or to be identified).

• Selecting a suitable state dimension n ≥ 1 for the reduced model, the subset F̂ and, in the
output-outside-the-state case, the subset Ĝ.

• Solving the abstract problem (7); this reads, in the output-outside-the-state case:

min
f∈F̂,g∈Ĝ

1
2

∑Ns

j=1

´ T
0
|ŷj(t)− g(xj(t))|2dt

s.t. ẋj(t) = f(xj(t), ûj(t)), t ∈ (0, T], j = 1, . . . , Ns

xj(0) = x0, j = 1, . . . , Ns,

(18)

where x0 = 0, while in the output-inside-the-state case:

min
f∈F̂

1
2

∑Ns

j=1

´ T
0
|ŷj(t)− πNy (xj(t))|2dt

s.t. ẋj(t) = f(xj(t), ûj(t)), t ∈ (0, T], j = 1, . . . , Ns

xj(0) = x0, j = 1, . . . , Ns,

(19)

where x0 = (yT0 ,0
T)T . We notice that (19) can be seen as a particular case of (18) (by

setting Ĝ = {πNy}); therefore, in the following we will confine ourselves, without loss of
generality, to (18).

2.6 On the choice of the sets F̂ and Ĝ
The richness of the spaces F̂ (and, in the output-outside-the-state case, Ĝ) should be chosen
according to the Occam’s razor principle of parsimony (William of Ockham, 1287–1347, English
Franciscan friar, scholastic philosopher and theologian), by which frustra fit per plura quod fieri
potest per pauciora (It is useless to do with more what can be done with less). One should avoid
the two opposite situations: when too poor spaces are considered, the expressive power of the

model class ΦF̂,Ĝ,X̂ is too small to capture the complexity of the HF model; on the other hand, if
F̂ (and Ĝ) are too rich (in the extreme, F̂ = Fn and Ĝ = Gn), we expect a very good match on
the training set (6), but this typically results into overfitting (see e.g. Rasmussen and Ghahramani
2001). The compromise stays in the middle, where the so-called Occam’s hill is located (Rasmussen

and Ghahramani 2001), i.e. where the richness of the spaces F̂ and Ĝ is enough to satisfactorily
reproduce the observations (6), but not beyond.

2.7 Solution strategy

The unknowns of problem (19) and, more in general, (18) are the functions f and, in the output-
outside-the-state case, also g. We are thus performing optimization in functional spaces. It is
interesting to look at the first-order optimality condition for this optimization problem, when
F̂ = Fn and Ĝ = Gn. With this aim, we write the Lagrangian functional associated to problem
(18). Thus, we introduce a family of Lagrange multipliers wj ∈ C0([0, T];Rn), for j = 1, . . . , Ns,

12

associated to the constraints given by the state equations:

L(f ,g, {xj}j , {wj}j) =
1

2

Ns∑

j=1

ˆ T

0

|ŷj(t)− g(xj(t))|2dt

−
Ns∑

j=1

ˆ T

0

wj(t) · (ẋj(t)− f(xj(t), ûj(t))) dt

−
Ns∑

j=1

wj(0) · (xj(0)− x0).

(20)

The adjoint equations are recovered by setting to zero the variation of the Lagrangian with respect
to the state variables:

{
−ẇj(t) = ∇Txg(xj(t)) (g(xj(t))− ŷj(t)) +∇Tx f(xj(t), ûj(t)) wj(t) t ∈ [0, T)

wj(T) = 0.
(21)

The first-order optimality conditions are obtained by setting equal to zero the Gâteaux derivative
of the objective functional J with respect to the two unknowns f ∈ Fn and g ∈ Gn, for any possible
variations δf ∈ Fn and δg ∈ Gn:

{
〈∂J∂f , δf〉 =

∑k
j=1

´ T
0
δf(xj(t), ûj(t)) ·wj(t)dt = 0 ∀ δf ∈ Fn

〈∂J∂g , δg〉 =
∑k
j=1

´ T
0
δg(xj(t)) · (g(xj(t))− ŷj(t)) dt = 0 ∀ δg ∈ Gn.

(22)

In equations (21)–(22), which state the conditions the unknowns f and g must fulfil to be a (local)
minimum of the cost functional J , f and g are evaluated just in xj(t) and ûj(t) for j = 1, . . . , Ns
and t ∈ [0, T]. However, the trajectories of xj(t) and ûj(t) do not fill the whole spaces Rn and U .
Therefore, the problem of fullfilling Eqs. (21)–(22) is ill–posed, being underdetermined. This has
to be compensated for by proper regularization of the unknown themselves, by means of Occam’s
razor principle (see Sec. 2.6). A consequence of this is that the differentials in (22) cannot be
written in gradient form and thus gradient descent strategies cannot be applied for an iterative
optimization procedure.

Our strategy is that of parametrizing both the functions f and g by a finite set of real pa-
rameters, which we call respectively µ ∈ RNf and ν ∈ RNg , and then tackling problem (18) by
optimizing with respect to µ, ν (to stress the parametrization, we write f(x,u;µ) and g(x;ν)).
In this way the desired regularization is obtained in a natural way by controlling the size of Nf
and Ng since the complexity of candidate models is controlled by Nf and Ng. Indeed, by writing
the variation of the functions as δf = ∇µf δµ and δg = ∇νg δν, the sensitivity of the objective
functional can now be written in gradient form:

∇µJ =

k∑

j=1

ˆ T

0

∇Tµf(xj(t), ûj(t);µ) wj(t)dt

∇νJ =

k∑

j=1

ˆ T

0

∇Tν g(xj(t);ν) (g(xj(t);ν)− ŷj(t)) dt.

(23)

We notice that the same result can be obtained by differentiating the Lagrangian functional (20)
with respect to µ and ν. In Sec. 3 we will derive the discrete counterpart of (21) and (23), employed
to numerically solve problem (18).

The parametrization of f and g can be obtained in different manners, such as by polynomials,
piecewise polynomials, truncated Fourier series, splines, NURBS, etc. Here we choose to represent
them by ANNs, which can be seen as nonlinear maps parametrized by a finite number of real
parameters (see Sec. 3.1). Our choice is driven by the universal approximation properties of ANNs
(see Cybenko 1988, 1989) and their well recognized properties of learning from data.

13

input layer output layerhidden layers

(a) Feed-forward ANN

+

(b) Action of the i-th neuron

Figure 2: Scheme of a feed-forward ANN with two hidden layers (a) and of a general neuron (b).

3 Optimization strategy

In Sec. 2 we have formulated the model reduction problem as a the constrained optimization
problem (18). In this section we address its numerical approximation. In Sec. 3.1, we first recall
ANNs and their universal approximation property and then we show how ANNs can be employed
to approximate time-dependent models.

3.1 Artificial Neural Networks

An ANN consists in a number of simple processing units (the neurons), each one incorporating a
nonlinear mapping, interconnected to form a complex network (see e.g. Yegnanarayana 2009). In
this work we consider the case of feed-forward ANNs (also known as multilayer perceptrons); these
consisting in nL layers of neurons (the input layer, nL − 2 hidden layers, and the output layer),
where each neuron of a given layer has a connection (or synapse) towards each neuron of the next
layer (see Fig. 2a).

Each connection in the network is endowed with a weight (we denote by wij ∈ R the weight
of the connection from the j-th the i-th neuron). Each neuron, except for the ones in the input
layer, is characterized by an activation threshold ϑi ∈ R. The i-th neuron of the network takes as
input the weighted sum of the output values of the neurons of the preceding layer, shifted by the
threshold value ϑi (i.e. βi =

∑
j∈Ii wijαj − ϑi, where Ii and Oi are the sets of the neurons of the

previous and next layer respectively) and then applies a nonlinear function (i.e. αi = fact(βi)). The
activation function fact is a sigmoidal nonlinear function, mimicking the Heaviside-like activation
function of biological neurons. In this work, we take fact(s) = tanh(s). In Fig. 2b a schematic
picture of the action of a generic neuron is shown.

By denoting with nI and nO the number of neurons in the input and output layers respectively,
an ANN can be seen as a map from RnI to RnO , where the input data flow through the layers, from
the first to the last one. The values αi associated to the input layer coincide with the inputs of the
ANN, while the outputs of the ANN consist in the values βi of the output layer (notice that the
activation function is not applied to the last layer). In other words, let us denote by q = f(p;µ)
the map represented by the ANN, where p ∈ RnI , q ∈ RnO and µ ∈ RNf is the vector collecting
both the weights wij and the thresholds ϑi. Let i1, . . . , inI

be the indexes of the neurons of the
input layer and o1, . . . , onO

be the indexes of the neurons of the output layer. Then, αih = ph for
h = 1, . . . , nI and qh = βoh for h = 1, . . . , nO.

In a typical machine learning algorithm, the number of layers and of neurons are fixed a priori
and the values of the parameters µ are optimized according to a proper learning strategy. In
particular, in the supervised learning framework (see e.g. Yegnanarayana 2009), a measure of the
performance of the network is available, so that gradient-based optimization algorithms can be
applied to determine the parameters µ in an iterative manner, until a convergence criterion is
satisfied.

14

By a classical result by Cybenko (Cybenko 1989), known as universal approximation theorem,
ANNs with a single hidden layer can approximate with arbitrarily small error any continuous
function on a compact set, provided that a sufficient number of hidden neurons are employed.

In the following, we recall some useful results on ANNs which will be exploited in the following
sections.

3.1.1 Computing the sensitivities of the ANN output

The calculation by means of the chain rule of the sensitivity of the output q with respect to the
input p or to the parameters µ (which we denote respectively by ∇xf and ∇µf) give raise to the
so-called back-propagation formulas. To derive them, we need first to compute the sensitivity of
the network output q with respect to the neurons outputs αj . Thus, we have, for h = 1, . . . , nO,
and for any j belonging to the input layer or to the hidden layers:

∂qh
∂αj

=

wohj if j ∈ Ioh
∑

k s.t. j∈Ik

∂qh
∂αk

f ′act(βk)wkj otherwise.

Notice that to derive the sensitivities associated to a given layer, the sensitivities of the next layer
are required, due to the chain rule. For this reason, the calculation should be performed first for the
last hidden layer and then traced-back to the input layer (whence the name of back-propagation).
Then, we have, for h = 1, . . . , nO, for k = 1, . . . , nI , for i /∈ {i1, . . . , inI

} and j ∈ Ii:

∂qh
∂pk

=
∂qh
∂αik

,

∂qh
∂ϑi

=

−∂qh∂αi
f ′act(βi) if i does not belong to the output layer

−1 if i = oh

0 otherwise,

∂qh
∂wij

= −αj
∂qh
∂ϑi

.

3.1.2 Compact representation of the ANN

By denoting with NL the set of neurons indices belonging to the layer L = 1, . . . , nL, we collect
the weights of the synapses between the layer L and the layer L+ 1 in a matrix, which we denote
by WL = [wij]i∈NL,j∈NL+1

, for L = 1, . . . , nL − 1. In a similar manner, we collect the thresholds
of the same synapses in a vector, which we denote by ϑL = [ϑi]i∈NL

. With this notation, the map
represented by the ANN can be written as follows:

f(p;µ) = WnL−1 fact (. . .W2 fact (W1 p− ϑ1)− ϑ2 . . .)− ϑnL−1, (24)

where the application of the activation function fact must be interpreted component-wise. We
notice that the parameters vector µ ∈ RNf collects the entries of the matrices WL and of the
vectors ϑL.

3.1.3 Transforming the ANN through affine changes of variables

Thanks to the compact representation (24), it is easy to derive the parameters of the ANN arising
from another ANN after an invertible and affine change of variables. Consider the following affine
transformation of both the input and the output of the ANN q = f(p;µ), i.e. p̃ = Ap + b,
q̃ = Cq + d. By simple calculations it turns out that the weights µ̃ such that q̃ = f(p̃; µ̃) are
obtained by substituting the weight and the thresholds associated to the first and last layers of
synapses as follows:

W̃1 = W1A−1, ϑ̃1 = ϑ1 −W1A−1b,

W̃nL−1 = CWnL−1, ϑ̃nL−1 = CϑnL−1 − d.

15

3.1.4 The crucial role of normalization

Even if ANNs can work with data values spanning different order of magnitudes, their performance
is optimized when both input p and output q data are normalized. Therefore, before training the
network, we normalize both the input u and the output y so that their components take values
in the interval [−1, 1]. Moreover, since the output of the ANN representing f are derivatives with
respect to time, we also normalize time with respect to the fastest time scale associated with the
HF model (1), which can be estimated by considerations on the training set. A rough estimation
of the order of magnitude suffices in most of the cases. Once the network has been trained, we
can easily recover the model associated with the non-normalized variables by exploiting the affine
transformation of Sec. 3.1.3.

Normalizing inputs, outputs and time is not enough to ensure that also the state variables (or
just the hidden variables in the output-inside-the-state case) are in the range [−1, 1], because of
their hidden nature (see again Sec. 2.4). Therefore, at each optimization epoch, if the mean square
value of a component of the state exceeds a lower or an upper bound (that we set to 0.1 and 2
respectively), we renormalize it by means of the affine transformation formulas of Sec. 3.1.3.

3.2 Representation of the unknowns in terms of ANN

Motivated by the universal approximation property of ANNs, we choose the spaces of candidate
functions F̂ and Ĝ as subsets of the space of functions represented by ANNs. We denote by FANN

n

the space of ANNs with n + Nu input neurons and n output neurons and by GANN
n the space of

ANNs with n and Ny input and output neurons, respectively. We have the following result:

Proposition 4. If U is compact, the space of ANN models ΦF
ANN
n ,GANN

n ,Xn is dense in the model
space ΦFn,Gn,Xn .

Proof. ANNs are by construction Lipschitz continuous, being the composition of Lipschitz contin-
uous functions, thus we have FANN

n ⊂ Fn and GANN
n ⊂ Gn. Moreover, properties (10) and (11)

holds by the universal approximation theorem (Cybenko 1989). Therefore, the thesis is a corollary
of Prop. 3.

We conclude that models represented by ANNs are universal approximators of the class of
models described by systems of ODEs.

3.3 Discretization of the state equation and of the objective functional

In order to numerically approximate problem (18), we discretize both the state equation (2) and the
objective functional J (see Eq. 8). For that, we subdivide the time domain [0, T] into a collection
of time instants 0 = t0 < t1 < · · · < tM = T . For simplicity, we consider the case of constant
time step ∆t (i.e. tk = k∆t for k = 0, . . . ,M) as the generalization to the varying time step case
is straightforward. On the other hand, it is convenient to consider the case when the experiments
have different durations. Therefore, we suppose that the j-th experiment takes place in the interval
[0, Tj], where Tj = Mj∆t and we denote ukj = ûj(tk) ∈ U and ykj = ŷj(tk) ∈ Y the input and the
output at discrete times. The discretized version of the objective functional J thus reads

J =
1

2
∆t

Ns∑

j=1

Mj−1∑

k=0

|ykj − g(xkj ;ν)|2. (25)

To simplify as much as possible the computational burden of the numerical solution of the state
equation, which has to be performed many times in the optimization loop, we choose to discretize
it by means of the forward Euler scheme. Thus, the discrete counterpart of problem (18) reads:

min
(µ,ν)∈RNf+Ng

1
2∆t

∑Ns

j=1

∑Mj−1
k=0 |ykj − g(xkj ;ν)|2

s.t. xk+1
j = xkj + ∆t f(xkj ,u

k
j ;µ), k = 0, . . . ,Mj − 1, j = 1, . . . , Ns

x0
j = x0, j = 1, . . . , Ns.

(26)

16

We notice that, after time discretization, the ANN model of Eq. (26) has a structure resembling
that of a recurrent neural network (RNN), that is an ANN whose internal state is fed back to
the input after each evaluation of the network (see e.g. Haykin 2009). RNNs are widely used
for machine learning tasks involving sequential inputs, such as handwriting recognition, speech
recognition and natural language processing, and also for time series prediction (Connor, Martin,
and Atlas 1994; Graves 2013; Hinton et al. 2012). However, the approach presented in the present
work is more general (indeed, RNNs can be interpreted as particular cases of our formulation,
see Sec. 3.2) and it allows to recast the MOR problem within the setting of a best-approximation
problem (7). Moreover, by addressing the problem at the continuous level and thanks to the
setting of (14), the reduced model that we obtain by solving the best-approximation problem is
independent of the RNN structure used in the training stage. In other words, once the optimization
problem in the discrete setting (26) has been solved (i.e. the ANN has been trained), the reduced
model is available in the form of Eq. (2). This allows more flexibility in the choice of the time
discretization scheme and time step size than with RNN, wherein the forward Euler scheme is
exclusively used with fixed ∆t. A further advantage is the possibility of coupling the ROM problem
with other mathematical models.

3.4 Training the ANN: optimization algorithm

Problem (26) can be written in the form of the following nonlinear least-squares problem:

min
ξ

1

2
|r(ξ)|2,

where ξ = (µT ,νT)T is the vector collecting all the design variables and r is the vector of residuals,
containing all the terms in the following form, for j = 1, . . . , Ns, k = 0, . . . ,Mj − 1, h = 1, . . . , Ny:

rj,k,h =
√

∆t (g(xkj ;ν)− ykj) · eh,

where eh denotes the h-th element of the canonical basis of RNy . To numerically find an approxi-
mate solution of this minimization problem we employ the Levenberg-Marquardt method, which is
designed for least-squares problems in the form (3.4) (see e.g. Nocedal and Wright 2006). At each
iteration k of the optimization loop, one finds the descent direction d(k) by solving the following
problem: (

∇T r(k)∇r(k) + λ(k)I
)

d(k) = −
(
∇T r(k)

)
r(k),

where λ(k) ≥ 0 is a weight. The update of the solution follows the rule ξ(k+1) = ξ(k) + γ(k)d(k),
where the step length γ(k) is selected by means of line-search in such a way that the Wolfe conditions
are fulfilled (see Nocedal and Wright 2006 for details). Specifically, in this work we employ the
line-search Algorithm 3.5 in (Nocedal and Wright 2006).

The Levenberg-Marquardt descent direction can be seen as a combination of the steepest-
descent direction (which is recovered for λ(k) � 1) with the Gauss-Newton direction (λ(k) = 0),
which is an approximation of the Newton direction obtained by neglecting the quadratic term in the
computation of the Hessian (that is the second term in D2(1

2rT r) = ∇T r∇r+
∑
j rjD

2rj , where we

denote by D2 the second derivative operator). To exploit the advantages of both techniques, the
scalar λ(k) should be iteratively adapted in order to follow the steepest-descent direction when the
solution is far from a minimum and to progressively switch to the Gauss-Newton direction when
the solution approaches a minimum point. We chose λ(k) = min

{
|r(0)|2, |∇T r(k)r(k)|

}
, which

ensures superlinear convergence for the method, provided that the objective functional is twice
continuously differentiable (see Grippo and Sciandrone 2011).

We adopt a random initialization of the design variables ξ(0), by taking independent samples
within the standard normal distribution.

3.5 Computation of sensitivities

The Levenberg-Marquardt method requires the computation of the sensitivities of the residuals
rj,k,h with respect to the unknown parameters µ and ν. Since the map from µ to the variables

17

xkj is implicitly given by the state equation in (26), we employ the Lagrange multipliers method to
compute the sensitivities. Generally speaking, suppose that one needs to compute the sensitivity
of a quantity Q = Q({xkj }j,k) with respect to µ. By introducing a family of Lagrange multipliers

wk
j , the Lagrangian associated to the problem reads:

L(µ,ν, {xkj }j,k, {wk
j }j,k) = Q({xkj }j,k)

−
Ns∑

j=1

Mj∑

k=1

wk
j ·
(
xkj − xk−1

j −∆t f(xk−1
j ,uk−1

j ;µ)
)

+ w0
j ·
(
x0
j − x0

)

 .

By setting the derivative of L with respect to the variables xkj equal to zero, it turns out that the

dual variables wk
j solve the following backward difference equations, for j = 1, . . . , Ns:

w
Mj

j =
∂Q

∂x
Mj

j

wk
j = wk+1

j + ∆t∇Tx f(xkj ,u
k
j ;µ) wk+1

j +
∂Q

∂xkj
, for k = 0, . . . ,Mj − 1.

(27)

Once the dual variables wk
j are available, the gradient of Q with respect to µ reads:

∇µQ =
∂Q

∂µ
+ ∆t

Ns∑

j=1

Mj∑

k=1

∇Tµf(xk−1
j ,uk−1

j ;µ) wk
j .

By following this procedure for Q = rj,m,h, it turns out that for j = 1, . . . , Ns, m = 0, . . . ,Mj − 1
we have:

∇µrj,m,h = ∆t

m∑

k=1

∇Tµf(xk−1
j ,uk−1

j ;µ) wk,

∇νrj,m,h =
√

∆t∇Tν g(xmj ;ν) eh,

where {
wk = wk+1 + ∆t∇Tx f(xkj ,u

k
j ;µ) wk+1, for k = 0, . . . ,m− 1

wm =
√

∆t∇Txg(xkj ;ν) eh.
(28)

The line-search algorithm for determining the step length γ(k) also requires the computation of
the gradient with respect to µ and ν of the discretized objective functional J = 1

2rT r. If the
residuals r and their gradient ∇r has been already computed, the gradient of J can be recovered
as
(
∇T r

)
r. However, if it is not the case, it is more efficient to compute it by applying the above

procedure with Q = J , thus getting:

∇µJ = ∆t

Ns∑

j=1

Mj∑

k=1

∇Tµf(xk−1
j ,uk−1

j ;µ) wk
j ,

∇νJ = ∆t

Ns∑

j=1

Mj−1∑

k=0

∇Txg(xkj ;ν) (g(xkj ;ν)− ykj),

where

wk
j = wk+1

j + ∆t∇Tx f(xkj ,u
k
j ;µ) wk+1

j

+ ∆t∇Txg(xkj ;ν) (g(xkj ;ν)− ykj), for k = 0, . . . ,Mj − 1

w
Mj

j = 0,

(29)

which are the discrete counterparts of (21) and (23).

18

Test case Name Source of HF model N Nu Ny
1 Nonlinear pendulum System of ODEs 2 2 1
2 Nonlinear transmission

line circuit
System of ODEs 1000 1 1

3 Heat equation Parabolic PDE 3721 9 3

Table 1: Test cases list.

𝜗

𝑃

𝒖𝑢1

𝑢2𝑚

𝜎

𝐿

𝑦

Figure 3: Nonlinear pendulum problem considered in Sec. 4.1

4 Numerical Results

In this section we assess the capabilities of the proposed reduction approach through three test
cases, summarized in Table 1. First, in Sec. 4.1, we consider the nonlinear pendulum problem.
Thanks to the modest complexity of this test case (N = 2), we can perform a sensitivity analysis
on the network architecture, highlighting the Occam’s hill (Sec. 2.6). Moreover, we can directly
compare the internal dynamics of the reduced models with that of the HF model.

Next, to test the proposed reduction approach on large-scale problems, we consider an electric
circuit with nonlinear elements, described by a nonlinear system of 1000 ODEs (Sec. 4.2). Finally,
we consider a parabolic PDE, whose HF model is given by its Finite Element (FE) approximation,
featuring thousands of state variables (Sec.4.3).

4.1 Test case 1 : Nonlinear pendulum

Consider a mass m, subject to its weight P , suspended by a weightless inextensible string of
length L and connected to a fixed support through a hinge subject to viscous damping with
constant σ. The pendulum, starting from its resting condition, is subject to an external force
u(t) = u1(t)e1 + u2(t)e2. By denoting the angle formed with the vertical direction by ϑ(t), we
have that the motion of the pendulum is described by the following ODE:

{
ϑ̈(t) = 1

Lm (u2(t) cosϑ(t) + (u1(t)− P) sinϑ(t))− σ ϑ(t) t ∈ (0, T],

ϑ(0) = 0, ϑ̇(0) = 0.
(30)

We set the constants values to m = L = 1, P = 2, c = 3. Moreover, we set the external force
u ∈ [−1, 1]2. Suppose that we are interested in predicting the horizontal displacement of the mass
y(t) = L sinϑ(t) (in this case we drop the bold notation being the output a scalar), given the input
u(t). The input-output map given by (30) fall within the concept of model introduced in Sec. 2.1,
where Nu = 2, Ny = 1, U = [−1, 1]2, Y = [−1, 1]. Moreover, this model can be written in the

form (1), by setting X = (ϑ, ϑ̇)T and thus we have N = 2.
For the discretization of the state equation (see Sec. 3.3), we set ∆t = 5 · 10−2. Moreover, to

mitigate the computational cost of the evaluation of the objective functional and its derivatives, we
evaluate the error every 10 time steps (or, equivalently, we employ a 10 times larger time step in the
evaluation of the objective functional J . In this first test we consider the output-inside-the-state
case.

19

0 10 20

-1

0

1

0 10 20 0 10 20 0 10 20

0 10 20

-1

0

1

0 10 20 0 10 20 0 10 20

0 10 20

-1

0

1

0 10 20 0 10 20 0 10 20

0 20 40

-1

0

1

0 20 40 0 20 40 0 20 40

u1 u2 y

Figure 4: Test case 1 : Training set.

0 20 40

-1

0

1

0 10 20 0 20 40 0 20 40 0 20 40

u1 u2 y

Figure 5: Test case 1 : Validation set.

4.1.1 Training, validation and test sets

The optimization of the ANN described in Sec. 3.4 is led by the set of experiments (6) collected from
the HF model. The choice of such training set is crucial since it is expected to be representative
of all the possible working regimes of the system. Moreover, it should be large enough to avoid
overfitting of the reduced model on the training set itself.

In this first example, we intentionally consider a poor training set, such that overfitting is likely
to occur in order to better investigate the sensitivity of the proposed reduction approach with
respect to n (i.e. the number of states) and to the complexity of the network. The training set is
represented in Fig. 4. It comprises the step responses associated to different stationary values of the
input, in the form u(t) = ū1[t1,t2](t) (notice that ū span all the set U = [−1, 1]2) and four samples
with oscillating input, obtained by sinusoids with different frequency, amplitude and mean value.
The frequency range of the signals is chosen in such a way that it covers several characteristic time
scales of the considered HF model.

To monitor the ANN learning process, at each optimization epoch, we evaluate the performance
of the ANN on a further set, that we call validation set. The comparison between the relative L2

error on the training set (which we denote by Etrain) and the error on the validation set (which we
denote by Eval) allows to perform regularization by early stopping (see e.g. Yegnanarayana 2009):
as long as the error on the validation set start increasing, we stop the optimization loop since this
is an indication that overfitting occurs. In the validation set we place 5 samples, comprising several
working regimes of the system (see Fig. 5). Notice that in this set we also switch from a regime to
another inside the same sample, to monitor the capability of the model to cope with it.

Finally, when the optimization loop is completed, we test the performance of the reduced model

20

100 102 104

(a)

10-2

10-1

100

101

102

100 102 104

(b)

10-2

10-1

100

101

102

100 102 104

(c)

10-2

10-1

100

101

102

100 102 104

(d)

10-2

10-1

100

101

102

100 102 104

(e)

10-2

10-1

100

101

102

100 102 104

(f)

10-2

10-1

100

101

102 Train
Validation

Figure 6: Test case 1 : examples of evolution of the error on the training (Etrain) and validation
sets (Eval).

on a large-size test set, comprising step responses, oscillatory inputs and randomly generated ones.
The test set amounts to 126 samples.

4.1.2 Sensitivity analysis of the network complexity

The objective functional J is non-convex and features several many local minima. As a conse-
quence, the optimized ANN obtained by means of the strategy of Sec. 3.4 may depend on the
initialization of the ANN itself. Since we adopt a random initialization for the ANN, by running
the proposed strategy several times with the same ANN architecture, we actually end up with very
different results. This is intimately linked to the non-uniqueness of representation of a given model
(see Remark 1): very different ANNs may represent the same model. We will go back to this issue
in Sec. 4.1.3.

Fig. 6 shows the evolution, through the optimization process, of the error on the test (Etrain) and
validation sets (Eval) for different random initializations of the ANN . Cases (a)-(c) show “good”
outcomes of the optimization process: both errors decrease until a minimum of the functional
is reached; a very good correlation between the two errors is observed during the optimization
process, thus indicating good performances of the learning process; the final levels of error for
the test and validation set are comparable, thus we are not in the presence of overfitting. The
remaining cases, in turn, show “bad” outcomes:

• In (d) the optimization proceeds well, until Eval starts increasing, which is a typical sign a
overfitting. Notice that the online evaluation of Eval allows to detect this phenomenon and
to perform early stop the optimization process.

• In (e), instead, a more subtle case of overfitting occurs since it originates in the early stages
of the optimization and we do not observe an increase of Eval.

• In (f) finally, even if we are not in presence of significant overfitting, the ANN is not per-
forming well since the final levels of Etrain and Eval are much higher than the usual values
obtained with the same ANN architecture. In this case the optimization problem got stuck
into a “bad” local minimum. Globalization strategies, such as Simulated Annealing (see e.g.
Press et al. 1986), can be selected to handle with this issue, even if this is beyond the scope
of the present work.

In the following we perform a sensitivity analysis of the performance of the proposed reduction
approach w.r.t. the complexity of the network, i.e. the number of hidden neurons, which we denote
by Nneurons. For simplicity, we consider only the case of ANNs with a single hidden layer. Figure
7 shows the dependency of the performance of the proposed reduction approach on the number of
hidden neurons, in the cases n = 1 and n = 2. Each cross is associated to a single test, while the
coloured regions highlight the areas spanned by the test which did not get stuck into a “bad” local
minimum (we tag a local minimum as “bad” if the error Etrain is more than 10 times the best error
obtained with the same ANN architecture).

Let us consider first the case n = 1. By switching form Nneurons = 2 to Nneurons = 3, thanks
to the enhanced representative capacity of the ANN, the errors associated with the three sets
significantly decrease (see Fig. 7a). However, by further increasing Nneurons, we cross the Occam’s
hill (see Sec. 2.6) and, even if Etrain keeps decreasing, Etest and Eval start increasing. This phe-
nomenon is also evident from the right figure, showing the ratio Etest/Etrain increasing with the

21

2 3 4 5 6

inner neurons

0.1

0.15

0.2

0.25

Train
Validation
Test

2 3 4 5 6

inner neurons

0.8

1

1.2

1.4

1.6

1.8
Test/Train

(a) n = 1

2 3 4 5 6

inner neurons

10-3

10-2

10-1

100

101

Train
Validation
Test

2 3 4 5 6

inner neurons

0.5

1

1.5

2

2.5

3
3.5

Test/Train

(b) n = 2

Figure 7: Test case 1 : errors vs number of hidden neurons Nneurons, in the cases (a) n = 1 and
(b) n = 2. For both cases, the left plot shows the errors Etrain, Eval and Etest, while the right plot
shows the ratio Etest/Etrain. Each cross represents the final result of a test (including when the
tests gets stuck into a “bad” local minimum). Coloured regions represent the areas spanned by
the tests, excluding the tests which got stuck into a “bad” local minimum.

0 5 10 15 20
-1

-0.5

0

0.5

1

n
 =

 1

Test #1

0 5 10 15 20

0

0.5

1

Test #2

0 5 10 15 20

0

0.5

1

Test #3

0 5 10 15 20
-1

-0.5

0

0.5

1
Test #4

0 5 10 15 20
-1

-0.5

0

0.5

1

n
 =

 2

0 5 10 15 20

0

0.5

1

0 5 10 15 20

0

0.5

1

0 5 10 15 20
-1

-0.5

0

0.5

1

u1 u2 y (HF) y (ANN)

Figure 8: Test case 1 : comparison of the exact solution (blue line) and the solution obtained
with the ANN model (red line) in four different test cases. First row: one-variable model; Second
column: two-variables model.

network complexity. Even if the issue of designing the training set falls beyond the purposes of the
present work, we notice that with a richer training set the top of the Occam’s hill would probably
move towards larger values of Nneurons, thus allowing to reach a better performance of the reduced
model.

We then consider the case n = 2 (see Fig. 7b). The introduction of a further state variable
in the system, w.r.t. the case n = 1, translates in significant increment of the model ability
to faithfully reproduce the input-output map given by the HF model, as expected according to
Prop. 2. Indeed, even if for Nneurons ≤ 3 the errors are similar to the case n = 1, by increasing
the network complexity the errors drop by one order of magnitude for Nneurons = 4, before slowly
diverging (the training error Etrain decreases, while the validation Eval and test error Etest slightly
increase). We also notice the occurrence of tests which got stuck in “bad” local minima (highlighted
in Fig. 7b by the presence of crosses outside the coloured areas) for Nneurons ≥ 4, due to the raising
of complexity of the landscape of Etrain when the dimensionality of the design space increases.

To sum up, we select as best networks the ones minimizing the error on the test set forNneurons =
3 in the case n = 1 and for Nneurons = 4 in the case n = 2, namely where the top of the Occam’s
hill is apparently located in the two cases. Figure 8 shows the comparison of the results obtained
in four test cases with the HF and the two selected reduced models (the first row refers to the
model with n = 1, the second to the model obtained with n = 2).

22

4.1.3 What did the ANN actually learn?

The feasibility of the reduction approach proposed in this work is strictly related to the possibility
of faithfully representing the state of the HF model (which we denote by X(t) ∈ RN) by means
of a lower-dimensional state x(t) ∈ Rn. If this is the case, then the knowledge of x(t) and u(t)
provides enough information to compute, with just a little approximation, both the output y(t)
and the evolution of the state of the system (that is to say the value of d

dtx(t)).
We may thus interpret the learning process as that of implicitly building a map from the

reduced-order state x to the full-order state X, which is not directly observed, but it is observed
only through its effects to d

dty(t). This is somehow similar to projection-based MOR strategies
(see Sec. 1.1), with the important differences that: (1) in this case the map is not explicitly built
and thus is not available; (2) while in projection-based methods the map is linear, here nonlinear
mappings can be exploited; (3) since the effects of the internal state X are seen just though y, only
the features which are relevant for the input-output map are exploited, whereas POD for example
may extract features from the snapshots which do not provide a significant contribution to the
input-output map.

As mentioned before, the reduced model implicitly defines a map from the HF model state X(t)
to the reduced model state x(t). This map is not explicitly built. Moreover, as noticed in Remark 1,
a model described by an ODE is invariant with respect to change of variables for its internal state
x̃ = h(x). For these reasons, it is usually troublesome to give a physical interpretation to the state
variables of the reduced model.

Let us consider the example addressed in this Section, for n = N = 2. This case may not
be interesting in a MOR perspective, but it helps to shed light on the machinery behind the
proposed reduction approach. Indeed, thanks to the choice g(x) = πNy , we have, in principle,
x1(t) = L sinϑ(t). Consequently, we may speculate that the knowledge of the first variable of the
reduced model x1 provides all the information needed to reconstruct the first variable of the HF
model ϑ. Therefore, we expect that the second variable of the reduced model x2 provides the
missing information to reconstruct ϑ̇. This does not necessarily entail that ϑ̇ is a function of x2,
but in general we have that ϑ̇ is a function of both x1 and x2. If this is true, then when a trajectory
in the (ϑ, ϑ̇) plane crosses, then the same should happen for the trajectory in the (x1, x2) plane.
In other words, all the trajectories of the reduced models, corresponding to the a given input u,
should be homotopic to the corresponding trajectory of the HF model.

To verify these conjectures, we consider the oscillating input also employed in the first column of
Fig. 8 (i.e. u1 = sin(t) cos(1.3 t), u2 = cos(1.8 t) sin(t)) and we compare the trajectories of the HF
model (grey background in Fig. 9) with those of four different reduced models (white background
in Fig. 9), obtained with four different random initializations of the ANN. In the first line of Fig. 9
we show the time evolution of the two state variables of the systems. By looking at the the figure it
is apparent how different the obtained ANN models can be. However, by observing – in the second
row of Fig. 9 – the trajectories in the phase space (x1, x2), one can see that all the trajectories are
approximatively homotopic to the trajectory of the HF model in its phase space (ϑ, ϑ̇). Finally,
in order to better visualize the role of the second variable, we decouple it from x1 in the following
way. First, we collect the values of the two variables at the discrete times t0, t1, . . . in two vectors,
which we denote by z1 and z2, respectively. Next, we centre the vectors (z′j = zj − z̄j , for j = 1, 2,
where z̄ denotes the mean value of z). Next, we subtract to z′2 the component parallel to z′1 (that
is to say z′′2 = z′2− (z′2 ·z′1)/‖z′1‖2 z′1). Finally, we normalize z′′2 (that is to say z′′′2 = z′′2/‖z′′2‖). The
third row of Fig. 9 shows the trajectories in the plane (x1, x

′′′
2). For the original model, we show

the trajectory in the plane (ϑ, ϑ̇′′′), where the coordinate ϑ̇′′′ is computed by the same procedure
as x′′′2 .

4.2 Test case 2 : Nonlinear transmission line circuit

In order to assess the capability of the proposed reduction approach to reduce the complexity of
large-scale nonlinear systems, we consider a popular benchmark in MOR, namely the nonlinear
transmission line circuit represented in Fig. 10 (see e.g. Chen and White 2000; Rewieński and
White 2001). It is an electrical network comprising a current source, N = 1000 unitary resistors,
N unitary capacitors and N nonlinear diods with law i = e40 v − 1. The input of the model is

23

0 5 10 15 20
-1

-0.5

0

0.5

1
HF model

d /dt

-0.2 0 0.2
-1

-0.5

0

0.5

1

-0.2 0 0.2

-2

0

2

0 5 10 15 20
-1

-0.5

0

0.5

1
ANN model #1

x
1

x
2

-0.2 0 0.2
-1

-0.5

0

0.5

1

-0.2 0 0.2

-2

0

2

0 5 10 15 20
-1

-0.5

0

0.5

1
ANN model #2

x
1

x
2

-0.2 0 0.2
-1

-0.5

0

0.5

1

-0.2 0 0.2

-2

0

2

0 5 10 15 20
-1

-0.5

0

0.5

1
ANN model #3

x
1

x
2

-0.2 0 0.2
-1

-0.5

0

0.5

1

-0.2 0 0.2

-2

0

2

0 5 10 15 20
-1

-0.5

0

0.5

1
ANN model #4

x
1

x
2

-0.2 0 0.2
-1

-0.5

0

0.5

1

-0.2 0 0.2

-2

0

2

Figure 9: Test case 1 : results of the test case considered in Sec. 4.1.3. Each column refers to a
different model (first column: HF model; other columns: four different ANN models). First line:
time evolution of the two state variables of the system (first column: ϑ and ϑ̇; other columns: x1

and x2). Second line: trajectories in the phase space (first column: (ϑ, ϑ̇); other columns: (x1, x2)).
Third line: trajectories in the (ϑ, ϑ̇′′′) phase space (first column) and (x1, x

′′′
2) phase space (other

columns).

1 2 3 N-1 N

𝑢(𝑡)

Figure 10: Test case 2 : scheme of the nonlinear transmission line electric circuit considered in
Sec. 4.2.

the current source u(t), taking values in U = [0, 1], and the output is the tension at the first node
v1(t). By denoting by vi the voltage at the i-th node, the HF model reads as follows:

v̇1(t) = −2 v1(t) + v2(t) + 2− e40 v1(t) − e40(v1(t)−v2(t)) + u(t)

v̇i(t) = −2 vi(t) + vi−1(t) + vi+1(t) + e40(vi−1(t)−vi(t)) − e40(vi(t)−vi+1(t)),

for i = 2, . . . , N − 1

v̇N (t) = −vN (t) + vN−1(t)− 1 + e40(vN−1(t)−vN (t)),

(31)

supported by the initial condition v1(0) = v2(0) = · · · = vN (0) = 0. Notice that the HF model is
written in the form of Eq. (1), for X = (v1, . . . , vN)T and F : RN × [0, 1]→ RN .

We consider the training set represented in Fig. 11, comprising 5 step inputs and 20 randomly
generated input signals, each of 1 s duration. In this test case we consider both the output-inside-
the-state and the output-outside-the-state cases, for n = 1, 2, 3 and we compare the results. In all
the cases we employ ANNs with a single hidden layer, with respectively 8 and 3 neurons in the
ANN for f and g. For the time discretization, we employ a time step of ∆t = 5 · 10−3.

As mentioned in Sec. 2.4.2, in the case n ≥ Ny, models in the form (2) can be possibly rewritten
in the form (17). Even if this is not always valid, we may expect that with the constraint g = πNy

the capacity of the class of models to approximate the HF model is not substantially reduced.

24

0

0.5

1

u

0

0.01

0.02

y

0

0.5

1

u

0

0.01

0.02

y

0

0.5

1

u

0

0.01

0.02

y

0

0.5

1

u

0

0.01

0.02

y

0 0.5 1
t

0

0.5

1

u

0 0.5 1
t

0 0.5 1
t

0 0.5 1
t

0 0.5 1
t

0

0.01

0.02

y

Figure 11: Test case 2 : training set. Blue lines (axis on the left) represent the time evolution of
the input, red lines (axis on the right) represent the time evolution of the output.

Therefore we expect the output-inside-the-state case to provide similar results than the output-
outside-the-state case.

In Fig. 12a we show Etest, the relative L2 error on the test set (which comprises 25 step responses
and 80 randomly generated inputs), for the different cases considered. We notice that, as expected,
the two approaches provide, for a given value of n, very similar results. The output-inside-the-
state case is thus preferable since it is more efficient both in the offline phase (since the number of
design variables is lower) and in the online phase (since g does not need to be evaluated at each
time step). We also notice that, coherently with Prop. 2, the error Etest decreases as n increases,
reaching, for n = 3, a remarkably good approximation level (nearly 2.5 · 10−3). In Fig. 12b we
compare the response of the HF model with that of the three reduced models obtained with the
output-inside-the-state case in the time-domain.

4.3 Test case 3 : Heat equation (PDE)

We consider now the application of the proposed reduction approach to the MOR of a parabolic
PDE problem, which extends the benchmark problem considered in Manzoni, Pagani, and Lassila
2016, where its Reduced Basis (RB) reduction has been considered. Consider the spatial domain
Ω = (0, 1.5)2, whose boundary ∂Ω is partitioned into the top border Γt, in contact with a heat
reservoir with zero temperature, the bottom border Γb, with a constant inward heat flux ϕ = 1,
and in the wall borders Γw, characterized by no-flux boundary conditions (see Fig, 13). The time
evolution of the spatially distributed temperature ψ(x, t) in the domain Ω is thus described by the
heat equation:

∂
∂tψ(x, t)− div (k(x,u(t))∇ψ(x, t)) in Ω, for t > 0

k(x,u(t))∇ψ(x, t) · n = 0 on Γw, for t > 0

k(x,u(t))∇ψ(x, t) · n = ϕ on Γb, for t > 0

ψ(x, t) = 0 on Γt, for t > 0

ψ(x, 0) = 0 on Ω.

(32)

Let us partition the domain Ω into 9 subdomains Ωi of equal size, for i = 1, . . . , 9, as in Fig. 13.
Let us consider the piecewise constant thermal conductivity coefficient k, parametrized by the

25

1 1.5 2 2.5 3

n

10-3

10-2

10-1

er
ro

r

output-outside-the-state
output-inside-the-state

(a) Etest vs n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.005

0.01

0.015

y

HF model (N=1000)
ANN model (n=1)
ANN model (n=2)
ANN model (n=3)

(b) Time domain responses to the input u(t) = 1
2

(1 + cos(2π t)):
comparison between the HF model and three ANN models.

Figure 12: Test case 2 : model errors for n = 1, 2, 3 with both output-inside-the-state and output-
outside-the-state cases (a) and time-domain model responses (b).

Ω7 Ω8 Ω9

Ω4 Ω5 Ω6

Ω1 Ω2 Ω3
𝑦1

𝑦2

𝑦3

Γ𝑏: 𝑘 𝒖
𝜕𝜓

𝜕𝒏
= 1

Γ𝑏: 𝜓 = 0

Γ𝑤: 𝑘 𝒖
𝜕𝜓

𝜕𝒏
= 0Γ𝑤: 𝑘 𝒖

𝜕𝜓

𝜕𝒏
= 0

Figure 13: Test case 3 : domain and boundary conditions.

9-dimensional input u(t) ∈ [10, 100]9, defined as follows:

k(x,u) =

9∑

i=1

ui 1Ωi(x),

where 1Ωi
is the indicator function of Ωi. Consider then three probes, located at the centre of the

subdomains Ω1, Ω5 and Ω9, measuring the time evolution of the temperature in such points. The
output y(t) ∈ R3 is the vector collecting the three temperature values.

For the HF solution of (32), we consider the P2 Finite Element approximation on a 30 by 30
uniform square elements grid and we employ the Forward Euler scheme, with ∆t = 10−2, for the
time discretization, implemented in the MATLAB finite element library feamat (Pegolotti 2019).
The HF model has dimension N = 3721.

In this test case we compare the results obtained with the proposed reduction approach with
those obtained with a popular MOR method in the field of PDEs, namely the RB method, which
exploits the linearity of Eq. (32) and the affine dependence on u (Quarteroni, Manzoni, and Negri
2015). For the ANN-based reduction method we consider the cases n = 1, 2 and 3. In the first
two cases we employ the output-outside-the-state case, being Ny > n, while in the third case we
employ the output-inside-the-state one. In each case we use single hidden layer ANNs, with 12
hidden neurons for f and (if necessary) 3 hidden neurons for g. Figure 15 reports a subset of the
training set, comprising 10 steady-state responses of duration 0.4 s, obtained by sampling the input
space U = [10, 100]9 by means of Latin Hypercube Sampling (see McKay, Beckman, and Conover

26

0 0.5 1 1.5
0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5
0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5
0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5
0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

Figure 14: Test case 3 : 4 examples of snapshots obtained at different times with different inputs.

0 0.1 0.2 0.3 0.4

20

40

60

80

100

u

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

u

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

u

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

Figure 15: Test case 3 : a subset of the training set. Blue lines (axis on the left) show the time
evolution of the 9 inputs (i.e. the thermal conductivities of the 9 subdomains), red lines (axis on
the right) show the time evolution of the three outputs (i.e. the temperature in the location of the
three probes).

2000), and 50 random transients of duration 1 s. As of the RB method, we build the basis by POD
of the snapshot matrix obtained by sampling every 0.1 s the same set used to train the ANNs. In
both cases we employ the same time step used for the HF model, i.e. ∆t = 10−2.

In Fig. 17 we compare the results obtained by the two methods, by evaluating the error on a
test set composed by 20 steady-state inputs, 50 random input signals of duration 1 s (an example
is reported in Fig. 16) and 10 random input signals of duration 10 s. The purpose of the latter
choice is to asses the capability of the proposed reduction approach to approximate the evolution
of the HF model also for longer time horizons than the ones used in the training phase. As is
shown in Fig. 17a, for a given model size n, the ANN based reduced model performs better than
the RB one: for n = 3 its error is almost one order of magnitude smaller than the RB error and
to reach the same approximation level with the RB method we need at least n = 8. Moreover, the
reduction in terms of online computational time is greater with the proposed approach too. Even
if this result is implementation dependent, it can be ascribed to the fact that the online phase of
the RB method requires, at each time step, the assembling of the system matrices and right-hand
side as affine combination, weighted by the current value of u(t), of precomputed matrices and
vectors.

The major drawback of the proposed reduction approach lies in the offline phase, which requires
the training of one or two ANNs (for f and g), while for the RB method we just need to compute
the SVD decomposition of the snapshot matrix and to project both the model matrices and right-
hand side. Moreover, the computational complexity of the training rapidly grows with n and, for
high n, large training sets are needed to avoid overfitting, thus preventing the applicability of the

27

0 0.2 0.4 0.6 0.8 1
t

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

y
HF model (N=3721)
ANN model (n=1)
ANN model (n=2)
ANN model (n=3)

(a)

0 0.2 0.4 0.6 0.8 1
t

0

0.05

0.1

0.15

0.2

0.25

0.3

y

HF model (N=3721)
RB model (n=1)
RB model (n=2)
RB model (n=3)
RB model (n=10)

(b)

Figure 16: Test case 3 : time-domain comparison of the result of the HF model with those of the
different reduced models for a random input: (a) ANN models vs HF model, (b) RB models vs
HF model.

proposed approach to large n. For this reason, we limit ourselves to the cases n = 1, 2, 3. However,
from the presented results it seems that with the proposed approach it is possible to get a good
approximation of complex models (like the PDE model considered in this section) just with a few
variables, so we do not actually need to increase n if the approximation level is satisfactory for
the application. We also notice that in this work we employed very basic tools to train the ANNs,
while the offline phase may be considerably speeded up with the application of more advanced
techniques (see Sec. 5) which, besides decreasing the training time also minimize overfitting, thus
reducing the number of samples needed to train the ANN.

Finally, we notice that this comparison has been carried out in the most favourable case for RB,
namely linear models with affine input dependence and with linear state-output dependence, while
the proposed ANN-based reduction approach does not exploit any of those structural characteristic
of the HF model. Therefore, in the nonlinear case or with non affine input dependence, while the RB
method requires techniques such as EIM and DEIM (see Sec. 1.1), which reduce the performances
of the method, the proposed reduction approach can be applied without modifications (see e.g.
the Test case 2).

5 Conclusions and perspectives

We have proposed a data-driven nonlinear MOR technique, based on ANNs. We formulated the
model reduction problem as a best-approximation or maximum-likelihood problem, where we look
for the most suitable representation of the HF (high-fidelity) dynamical model into a class of

28

0 5 10 15

n

10-3

10-2

10-1

100

error
RB

error
ANN

(a) Etest vs n.

0 5 10 15

n

10-4

10-3

10-2

time
RB

/time
HF

time
ANN

/time
HF

(b) Online computational time reduction vs n.

Figure 17: Test case 3 : comparison between the proposed reduction approach and the RB method.
(a) Relative L2 error versus number of variables of the reduced model n; (b) Mean computational
time required by the reduced model, normalized w.r.t. that required by the HF model to simulate
the same amount of physical time, versus n.

simpler models. The latter consists in a class of ODE models described by means of an ANN (or
by two of them, in the output-outside-the-state case), which is fed by input-output pairs originated
from the HF system. Thanks to this formulation, it is possible to compute the sensitivity of the
model error with respect to the parameters of the ANNs, and to exploit standard optimization
techniques to make the ANN learn the underlying physics of the system. The proposed reduction
approach can be applied to a wide class of dynamical models with time dependent inputs, subject
to some minimal requirements (see Sec. 2.1).

We have shown that the class of ANN models used in this paper can approximate within any
desired accuracy any model described by a system of ODEs. Moreover, the same result holds by
replacing the class of ANNs with any class of functions that can approximate continuous functions
on compact sets with arbitrarily small error.

The proposed technique can be flexibly applied for different purposes: (i) building a surrogate
of a computationally expensive model, which allows for fast evaluations and which can be used for
multi-query purposes; (ii) reducing the state dimension of a time-dependent model; (iii) learning
a mathematical model starting from input-output pairs (see Fig. 1).

We have assessed the effectiveness of the proposed approach on a simple case study (namely the
nonlinear pendulum) and by investigating the reduction of two large-scale problems (a nonlinear
system of ODEs and a parabolic PDE), featuring thousands of degrees of freedom. In both cases
we derived reduced models capable of approximating the HF models with an error of order 10−3

for the ODEs system and 10−2 for the PDE, with just 3 state variables. We have also compared
the performance of the proposed reduction approach with that of the RB method, one of the most
popular MOR methods in the field of PDEs. For a given reduced model size, despite a more
expensive offline phase, the proposed reduction approach yielded much more accurate reduced
models than the RB method, also featuring a lower online cost in terms of computational time.

Some crucial aspects, where there is possibility for improvement of the proposed reduction
approach, have not been fully explored in the present study. In particular, we have not dealt with
the issue of the training set design, where it is possible to employ automatic procedures to select
an optimized training set, in a similar manner to the selection of snapshots in the RB framework
(see e.g. Quarteroni, Manzoni, and Negri 2015). Moreover, globalization techniques can be taken
into account to deal with the problem of local minima in the optimization process. Furthermore,
the offline phase may be considerably optimized with the application of more advanced learning
techniques than the one considered in this work, such as stochastic selection of the training set
(SGD, see e.g. Bottou 2010), dropout (Srivastava et al. 2014), batch normalization (Ioffe and
Szegedy 2015) and progressive layers freezing (Brock et al. 2017).

Finally, we notice that the formulation of the MOR problem in terms of minimization problem

29

potentially allows to easily incorporate into the learning stage some a priori knowledge on the HF
model, by suitably accounting for a penalization term.

Acknowledgements

The authors gratefully thank A. Menafoglio and S. Pagani (MOX, Politecnico di Milano) for the
interesting and useful discussions about MOR and statistical learning and L. Pegolotti (École
Polytechnique Fédérale de Lausanne) for kindly sharing the library feamat (Pegolotti 2019).

References

Alexandrov, N. M., R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A. Newman (2001). “Approx-
imation and model management in aerodynamic optimization with variable-fidelity models”.
In: Journal of Aircraft 38.6, pp. 1093–1101.

Antoulas, A. C. (2005). Approximation of large-scale dynamical systems. Vol. 6. Siam.
Antoulas, A. C., I. V. Gosea, and A. C. Ionita (2016). “Model reduction of bilinear systems in the

Loewner framework”. In: SIAM Journal on Scientific Computing 38.5, B889–B916.
Antoulas, A. C., D. C. Sorensen, and S. Gugercin (2000). A survey of model reduction methods for

large-scale systems. Tech. rep.
Bai, Z. (2002). “Krylov subspace techniques for reduced-order modeling of large-scale dynamical

systems”. In: Applied Numerical Mathematics 43.1-2, pp. 9–44.
Barrault, M., Y. Maday, N. C. Nguyen, and A. T. Patera (2004). “An ’empirical interpolation’

method: application to efficient reduced-basis discretization of partial differential equations”.
In: Comptes Rendus Mathematique 339.9, pp. 667–672.

Baur, U., C. Beattie, P. Benner, and S. Gugercin (2011). “Interpolatory projection methods for
parameterized model reduction”. In: SIAM Journal on Scientific Computing 33.5, pp. 2489–
2518.

Benner, P., S. Gugercin, and K. Willcox (2015). “A survey of projection-based model reduction
methods for parametric dynamical systems”. In: SIAM Review 57.4, pp. 483–531.

Benner, P., V. Mehrmann, and D. C. Sorensen (2005). Dimension reduction of large-scale systems.
Vol. 35. Springer.

Bottou, L. (2010). “Large-scale machine learning with stochastic gradient descent”. In: Proceedings
of COMPSTAT’2010. Springer, pp. 177–186.

Brock, A., T. Lim, J. M. Ritchie, and N. Weston (2017). “FreezeOut: Accelerate Training by
Progressively Freezing Layers”. In: arXiv preprint arXiv:1706.04983.

Brunton, S. L., J. L. Proctor, and J. N. Kutz (2016). “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems”. In: Proceedings of the National Academy
of Sciences, p. 201517384.

Casella, G. and R. L. Berger (2002). Statistical inference. Vol. 2. Duxbury Pacific Grove, CA.
Chaturantabut, S. and D. C. Sorensen (2010). “Nonlinear model reduction via discrete empirical

interpolation”. In: SIAM Journal on Scientific Computing 32.5, pp. 2737–2764.
Chen, Y. and J. White (2000). “A quadratic method for nonlinear model order reduction”. In:
Connor, J. T., R. D. Martin, and L. E. Atlas (1994). “Recurrent neural networks and robust time

series prediction”. In: IEEE transactions on neural networks 5.2, pp. 240–254.
Cybenko, G. (1988). Continuous valued neural networks with two hidden layers are sufficient.
— (1989). “Approximation by superpositions of a sigmoidal function”. In: Mathematics of Control,

Signals and Systems 2.4, pp. 303–314.
Deschrijver, D. and T. Dhaene (2005). “Rational modeling of spectral data using orthonormal

vector fitting”. In: 9th IEEE Workshop on Signal Propagation on Interconnects, pp. 111–114.
Deschrijver, D., B. Haegeman, and T. Dhaene (2007). “Orthonormal vector fitting: A robust macro-

modeling tool for rational approximation of frequency domain responses”. In: IEEE Transac-
tions on Advanced Packaging 30.2, pp. 216–225.

Drohmann, M., B. Haasdonk, and M. Ohlberger (2012). “Reduced basis approximation for non-
linear parametrized evolution equations based on empirical operator interpolation”. In: SIAM
Journal on Scientific Computing 34.2, A937–A969.

30

Everson, R. and L. Sirovich (1995). “Karhunen–Loeve procedure for gappy data”. In: Journal of
the Optical Society of America A 12.8, pp. 1657–1664.

Fink, J. P. and W.C. Rheinboldt (1983). “On the error behavior of the reduced basis technique
for nonlinear finite element approximations”. In: ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 63.1, pp. 21–28.

Freno, B. A. and K. T. Carlberg (2018). “Machine-learning error models for approximate solutions
to parameterized systems of nonlinear equations”. In: arXiv preprint arXiv:1808.02097.

Freund, R. W. (2003). “Model reduction methods based on Krylov subspaces”. In: Acta Numerica
12, pp. 267–319.

Gosea, I. V. and A. C. Antoulas (2015). “Model reduction of linear and nonlinear systems in
the Loewner framework: A summary”. In: Control Conference (ECC), 2015 European. IEEE,
pp. 345–349.

Graves, A. (2013). “Generating sequences with recurrent neural networks”. In: arXiv preprint
arXiv:1308.0850.

Grippo, L. and M. Sciandrone (2011). Metodi di ottimizzazione non vincolata. Springer Science &
Business Media.

Gu, C. (2011). “QLMOR: A projection-based nonlinear model order reduction approach using
quadratic-linear representation of nonlinear systems”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 30.9, pp. 1307–1320.

Guo, M. and J. S. Hesthaven (2019). “Data-driven reduced order modeling for time-dependent
problems”. In: Computer methods in applied mechanics and engineering 345, pp. 75–99.

Hackbusch, W. (1979). “On the fast solving of parabolic boundary control problems”. In: SIAM
Journal on Control and Optimization 17.2, pp. 231–244.

Haykin, S. S. (2009). Neural networks and learning machines. Vol. 3. Pearson Upper Saddle River.
Hernandez, A. F. and M. G. Gallivan (2008). “An exploratory study of discrete time state-space

models using kriging”. In: American Control Conference, 2008. IEEE, pp. 3993–3998.
Hesthaven, J. S., G. Rozza, and B. Stamm (2016). Certified reduced basis methods for parametrized

partial differential equations. Springer.
Hinton, G., L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P.

Nguyen, and T. N. Sainath (2012). “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups”. In: IEEE Signal processing magazine
29.6, pp. 82–97.

Hotelling, H. (1933). “Analysis of a complex of statistical variables into principal components.” In:
Journal of Educational Psychology 24.6, p. 417.

Ioffe, S. and C. Szegedy (2015). “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167.

Keesman, K. J. (2011). System identification: an introduction. Springer Science & Business Media.
Krige, D. G. (1951). “A statistical approach to some basic mine valuation problems on the Wit-

watersrand”. In: Journal of the Southern African Institute of Mining and Metallurgy 52.6,
pp. 119–139.

Lee, K. and K. Carlberg (2018). “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders”. In: arXiv preprint arXiv:1812.08373.

Lefteriu, S. and A. C. Antoulas (2010). “A new approach to modeling multiport systems from
frequency-domain data”. In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 29.1, pp. 14–27.

Ljung, L. (1998). “System identification”. In: Signal Analysis and Prediction. Springer, pp. 163–
173.

Loeve, M. (1978). “Probability theory, vol. ii”. In: Graduate Texts in Mathematics 46, pp. 0–387.
Löwner, K. (1934). “Über monotone matrixfunktionen”. In: Mathematische Zeitschrift 38.1, pp. 177–

216.
Maday, Y., N. C. Nguyen, A. T. Patera, and G. S. Pau (2007). “A general, multipurpose interpo-

lation procedure: the magic points”. In:
Manzoni, A., S. Pagani, and T. Lassila (2016). “Accurate solution of Bayesian inverse uncertainty

quantification problems combining reduced basis methods and reduction error models”. In:
SIAM/ASA Journal on Uncertainty Quantification 4.1, pp. 380–412.

31

Mayo, A.J. and A.C. Antoulas (2007). “A framework for the solution of the generalized realization
problem”. In: Linear Algebra and its Applications 425.2-3, pp. 634–662.

McKay, M. D., R. J. Beckman, and W. J. Conover (2000). “A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code”. In:
Technometrics 42.1, pp. 55–61.

Menafoglio, A., P. Secchi, and M. Dalla Rosa (2013). “A Universal Kriging predictor for spatially
dependent functional data of a Hilbert Space”. In: Electronic Journal of Statistics 7, pp. 2209–
2240.

Moore, B. (1981). “Principal component analysis in linear systems: Controllability, observability,
and model reduction”. In: IEEE transactions on automatic control 26.1, pp. 17–32.

Narendra, K. S. and K. Parthasarathy (1990). “Identification and control of dynamical systems
using neural networks”. In: IEEE Transactions on neural networks 1.1, pp. 4–27.

— (1992). “Neural networks and dynamical systems”. In: International Journal of Approximate
Reasoning 6.2, pp. 109–131.

Negri, F., A. Manzoni, and D. Amsallem (2015). “Efficient model reduction of parametrized systems
by matrix discrete empirical interpolation”. In: Journal of Computational Physics 303, pp. 431–
454.

Nelles, O. (2013). Nonlinear system identification: from classical approaches to neural networks
and fuzzy models. Springer Science & Business Media.

Nocedal, J. and S. Wright (2006). Numerical optimization. second. New York, NY, USA: Springer
Science & Business Media.

Pearson, K. (1901). “LIII. On lines and planes of closest fit to systems of points in space”. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11, pp. 559–
572.

Pegolotti, L. (2019). Feamat. url: https://github.com/lucapegolotti/feamat.
Peherstorfer, B., S. Gugercin, and K. Willcox (2017). “Data-Driven Reduced Model Construction

with Time-Domain Loewner Models”. In: SIAM Journal on Scientific Computing 39.5, A2152–
A2178.

Peherstorfer, B. and K. Willcox (2015a). “Dynamic data-driven reduced-order models”. In: Com-
puter Methods in Applied Mechanics and Engineering 291, pp. 21–41.

— (2015b). “Online adaptive model reduction for nonlinear systems via low-rank updates”. In:
SIAM Journal on Scientific Computing 37.4, A2123–A2150.

Peterson, J. S. (1989). “The reduced basis method for incompressible viscous flow calculations”.
In: SIAM Journal on Scientific and Statistical Computing 10.4, pp. 777–786.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1986). Numerical recipes: the
art of scientific computing. Cambridge Univ. Press, New York.

Prud’Homme, C., D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and G. Turinici
(2002). “Reliable real-time solution of parametrized partial differential equations: Reduced-basis
output bound methods”. In: Journal of Fluids Engineering 124.1, pp. 70–80.

Quarteroni, A., A. Manzoni, and F. Negri (2015). Reduced basis methods for partial differential
equations: an introduction. Vol. 92. Springer.

Quarteroni, A. and G. Rozza (2014). Reduced order methods for modeling and computational re-
duction. Vol. 9. Springer.

Quarteroni, A. and A. Veneziani (2003). “Analysis of a geometrical multiscale model based on the
coupling of ODE and PDE for blood flow simulations”. In: Multiscale Modeling & Simulation
1.2, pp. 173–195.

Raissi, M. and George E. Karniadakis (2018). “Hidden physics models: Machine learning of non-
linear partial differential equations”. In: Journal of Computational Physics 357, pp. 125–141.

Raissi, M., P. Perdikaris, and G. E. Karniadakis (2017a). “Machine learning of linear differential
equations using Gaussian processes”. In: Journal of Computational Physics 348, pp. 683–693.

— (2017b). “Physics Informed Deep Learning (Part I): Data-driven solutions of nonlinear partial
differential equations”. In: arXiv preprint arXiv:1711.10561.

— (2017c). “Physics informed deep learning (Part II): data-driven discovery of nonlinear partial
differential equations”. In: arXiv preprint arXiv:1711.10566.

— (2018). “Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Sys-
tems”. In: arXiv preprint arXiv:1801.01236.

32

https://github.com/lucapegolotti/feamat

Raissi, M., P. Perdikaris, and G. E. Karniadakis (2019). “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations”. In: Journal of Computational Physics 378, pp. 686–707.

Rasmussen, C. E. (2004). “Gaussian processes in machine learning”. In: Advanced lectures on
machine learning. Springer, pp. 63–71.

Rasmussen, C. E. and Z. Ghahramani (2001). “Occam’s razor”. In: Advances in neural information
processing systems, pp. 294–300.

Regazzoni, F., L. Dedè, and A. Quarteroni (2018). “Active contraction of cardiac cells: a reduced
model for sarcomere dynamics with cooperative interactions”. In: Biomechanics and Modeling
in Mechanobiology, pp. 1–24.

Rewieński, M. and J. White (2001). “A trajectory piecewise-linear approach to model order reduc-
tion and fast simulation of nonlinear circuits and micromachined devices”. In: Proceedings of
the 2001 IEEE/ACM international conference on Computer-aided design. IEEE Press, pp. 252–
257.

San, O. and R. Maulik (2018). “Neural network closures for nonlinear model order reduction”. In:
Advances in Computational Mathematics, pp. 1–34.

Sirovich, L. (1987). “Turbulence and the dynamics of coherent structures. I. Coherent structures”.
In: Quarterly of Spplied Mathematics 45.3, pp. 561–571.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). “Dropout: a
simple way to prevent neural networks from overfitting”. In: The Journal of Machine Learning
Research 15.1, pp. 1929–1958.

Trehan, S., K. T. Carlberg, and L. J. Durlofsky (2017). “Error modeling for surrogates of dy-
namical systems using machine learning”. In: International Journal for Numerical Methods in
Engineering 112.12, pp. 1801–1827.

Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.

33

	qmox01-copertina
	mox-2019117164937
	Introduction
	Model-based MOR
	Data-driven MOR
	Learning models from data
	Original contributions and outline

	Model reduction strategy
	The dynamical model
	Building a reduced model
	Models described by systems of ODEs
	Non-uniqueness of the representation
	Partial disambiguation by constraining x0
	Partial disambiguation by constraining g and x0

	The best-approximation problem
	On the choice of the sets F"0362F and G"0362G
	Solution strategy

	Optimization strategy
	Artificial Neural Networks
	Computing the sensitivities of the ANN output
	Compact representation of the ANN
	Transforming the ANN through affine changes of variables
	The crucial role of normalization

	Representation of the unknowns in terms of ANN
	Discretization of the state equation and of the objective functional
	Training the ANN: optimization algorithm
	Computation of sensitivities

	Numerical Results
	Test case 1: Nonlinear pendulum
	Training, validation and test sets
	Sensitivity analysis of the network complexity
	What did the ANN actually learn?

	Test case 2: Nonlinear transmission line circuit
	Test case 3: Heat equation (PDE)

	Conclusions and perspectives

	qmox01-terza_di_copertina

