Both practice and analysis of p-FEMs and adaptive hp-FEMs raise the question what increment in the current polynomial degree p guarantees a p-independent reduction of the Galerkin error. We answer this question for the p-FEM in the simplified context of homogeneous Dirichlet problems for the Poisson equation in the two dimensional unit square with polynomial data of degree p. We show that an increment proportional to p yields a p-robust error reduction and provide computational evidence that a constant increment does not.

A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square

CANUTO, CLAUDIO;Nochetto R. H.;Verani M.
2019-01-01

Abstract

Both practice and analysis of p-FEMs and adaptive hp-FEMs raise the question what increment in the current polynomial degree p guarantees a p-independent reduction of the Galerkin error. We answer this question for the p-FEM in the simplified context of homogeneous Dirichlet problems for the Poisson equation in the two dimensional unit square with polynomial data of degree p. We show that an increment proportional to p yields a p-robust error reduction and provide computational evidence that a constant increment does not.
2019
A posteriori error estimation; Adaptive hp-FEM for elliptic problems; Saturation property; Spectral-Galerkin approximations
File in questo prodotto:
File Dimensione Formato  
11311-1096882_Verani.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 729.25 kB
Formato Adobe PDF
729.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1096882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact