Nowadays, the digital reconstruction of vaults is carried out using photogrammetric and laser scanning techniques able to capture the visible surface with dense point clouds. Then, different modeling strategies allow the generation of 3D models in various formats, such as meshes that interpolates the acquired point cloud, NURBS-based reconstructions based on manual, semi-automated, or automated procedures, and parametric objects for Building Information Modeling. This paper proposes a novel method that reconstructs the visible surface of a vault using neural networks. It is based on the assumption that vaults are not irregular free-form objects, but they can be reconstructed by mathematical functions calculated from the acquired point clouds. The proposed approach uses the point cloud to train a neural network that approximates vault surface. The achieved solution is not only able to consider the basic geometry of the vault, but also its irregularities that cannot be neglected in the case of accurate and detailed modeling projects of historical vaults. Considerations on the approximation capabilities of neural networks are illustrated and discussed along with the advantages of creating a mathematical representation encapsulated into a function.

VAULT MODELING with NEURAL NETWORKS

Barazzetti L.;Previtali M.
2019-01-01

Abstract

Nowadays, the digital reconstruction of vaults is carried out using photogrammetric and laser scanning techniques able to capture the visible surface with dense point clouds. Then, different modeling strategies allow the generation of 3D models in various formats, such as meshes that interpolates the acquired point cloud, NURBS-based reconstructions based on manual, semi-automated, or automated procedures, and parametric objects for Building Information Modeling. This paper proposes a novel method that reconstructs the visible surface of a vault using neural networks. It is based on the assumption that vaults are not irregular free-form objects, but they can be reconstructed by mathematical functions calculated from the acquired point clouds. The proposed approach uses the point cloud to train a neural network that approximates vault surface. The achieved solution is not only able to consider the basic geometry of the vault, but also its irregularities that cannot be neglected in the case of accurate and detailed modeling projects of historical vaults. Considerations on the approximation capabilities of neural networks are illustrated and discussed along with the advantages of creating a mathematical representation encapsulated into a function.
2019
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Automation; Machine learning; Modeling; Neural Network; Point cloud; Vault
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLII-2-W9-81-2019.pdf

accesso aperto

Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1090195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact