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ABSTRACT: 

Nowadays, the digital reconstruction of vaults is carried out using photogrammetric and laser scanning techniques able to capture the 

visible surface with dense point clouds. Then, different modeling strategies allow the generation of 3D models in various formats, 

such as meshes that interpolates the acquired point cloud, NURBS-based reconstructions based on manual, semi-automated, or 

automated procedures, and parametric objects for Building Information Modeling. This paper proposes a novel method that 

reconstructs the visible surface of a vault using neural networks. It is based on the assumption that vaults are not irregular free-form 

objects, but they can be reconstructed by mathematical functions calculated from the acquired point clouds. The proposed approach 

uses the point cloud to train a neural network that approximates vault surface. The achieved solution is not only able to consider the 

basic geometry of the vault, but also its irregularities that cannot be neglected in the case of accurate and detailed modeling projects 

of historical vaults. Considerations on the approximation capabilities of neural networks are illustrated and discussed along with the 

advantages of creating a mathematical representation encapsulated into a function.  

  

     

 

1. INTRODUCTION 

Laser scanning and photogrammetric point clouds can capture 

the visible surface of vaults (intrados) with a high level of 

detail. This method reveals the geometric irregularities of the 

surface, making geometric survey a powerful non-destructive 

inspection and analysis tool in conservation and restoration 

projects. 

3D models generated from point clouds can be delivered in 

different formats. Photogrammetric software usually provides a 

mesh interpolated from the original point clouds, which is then 

textured to produce 3D models with color information and 

digital orthophotos. Similar results can be obtained with laser 

scanning point clouds, notwithstanding the quality of color 

information is not comparable with the one achievable from 

images.  

Meshes generated with the automatic interpolation of point 

clouds have some disadvantages, especially when they have to 

be used for conservation purposes. The first issue is related to 

the size of the model, which can be made up of several million 

triangles, resulting in heavy models. An additional (probably 

more important) issue concerns the interpolation algorithms that 

do not consider the different elements of the vault. This gives a 

single surface that does not follow the logic of construction of 

the vault.   

An alternative solution for vault modeling consists of the use of 

software for modeling with NURBS surfaces. Examples are 

Rhinoceros and Autodesk Maya. Commercial software allows 

the user to import point clouds and generate 3D surfaces with 

manual, semi-automatic, and automatic algorithms. The user 

plays a fundamental role in the modeling process. He/she can 

identify the different structural elements and separate the 

different surfaces, obtaining a model that is not only a “pure” 

geometric representation, but it also includes the interpretation 

carried out to understand better how the vault is built. After 

defining the generative geometry and modeling the 

discontinuities between constructive elements, modeling can 

become a more automatic procedure using both edges (generally 

NURBS curves) and point clouds. A surface is fitted to the 

point cloud using curves as boundaries to obtain a perfect 

element-to-element correspondence in the final model. 

Meshes and NURBS surfaces are powerful tools to reconstruct 

the visible surface of the vault. However, what happens for 

those elements that cannot be surveyed with point clouds? This 

could be the case of the internal structure of the vault as well as 

the extrados that (in some cases) it is not visible. Such problems 

are relevant in the case of BIM projects, which cannot be 

limited to the visible surfaces. BIM requires 3D objects with the 

opportunity to add information about the internal structure 

(layers) of the considered architectural elements. In other words, 

a vault for BIM must become a sort of “solid” object with a 

thickness. The advantage of BIM consists in parametrization 

procedures that allows one to modify the shape of the modeled 

elements without redrawing. In the case of a vault with 

unknown thickness, the extrados can be generated using an 

offset-based parametrization of the intrados. This is not a static 

solution since changing the value of the thickness in the BIM 

database modifies the 3D representation.   

The solution proposed in this paper relies on the reconstruction 

of the vault intrados with a neural network, which is trained 

using point clouds. The network is able to learn and 

approximate the geometry of the vault. It is obvious that 

geometry plays a fundamental role when dealing with vaults. 

Vaults can be intended as a “combination” of basic geometric 

primitives (cylinders, planes, spheres, etc.) with an additional 

aspect that cannot be neglected in the case of historic vaults: the 

irregular shape, i.e. the deviation from the ideal geometry made 

up of geometric primitives.  

Laser scanning and photogrammetric point clouds are able to 

capture the visible surfaces with millimeter-level accuracy, so 

that they can reveal the actual shape. Let us suppose that the 

surface of a “perfect” vault (i.e., the vault is made up of just a 

combination of basic primitives) is described by a function 𝑝 =
𝑝(𝒙), where 𝒙 is a vector.  We can assume that the geometric 

irregularities can be modeled by a second function 𝑑 = 𝑑(𝒙). 
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The function describing the entire vault will be the sum 𝑓 =
𝑝 + 𝑑.  

It is not difficult to find a closed-form expression form for 𝑝. 

On the other hand, the deviation term 𝑑 is not a constant for 

different vaults, since every vault has its own deformations. 

We propose a solution able to reconstruct the entire vault 

surface 𝑓 (without separating the contribution of 𝑝 and 𝑑) using 

the point cloud as representative of discrete values computed for 

𝑓.  

The advantage of the proposed method consists in the 

representation of the vault with a mathematical function that can 

be evaluated on a domain to reconstruct the vault. The approach 

includes modeling without drawing, since the vault is expressed 

using a closed-form expression. Sections can also be extracted 

by evaluating the estimated function along particular directions, 

for instance using a 2D line 𝑥2 = m𝑥1 +q in the horizontal plane.  

The paper is structured as follows. Section 2 presents an 

overview of the developed method addressing in detail the 

concept of surface approximation with neural networks. Section 

3 is focused on testing the viability of the proposed method by 

presenting some preliminary tests on synthetic datasets. Those 

tests were mainly devoted to determining the influence of the 

number of hidden layers of the neural network and the number 

of neurons to be used in each layer. Section 4 presents results 

for some real datasets. In particular, the reconstruction of some 

sets of real vaults with different shape is presented and 

discussed. The reconstructed vaults show a close 

correspondence with the input point cloud demonstrating the 

effectiveness of the proposed approach. The final section is 

devoted to draw some conclusions and to address future 

developments. 

 

 

 

2. OVERVIEW OF THE PROPOSED METHOD 

This work is an extension of what presented in Barazzetti 

(2018), here applied to the specific case of historical vaults. As 

mentioned, we assume that the surface of a vault can be 

approximated by a function 𝑓: 𝐷 → 𝐶 ⊆ ℝ. The traditional way 

to define 𝑓 is to study the shape of the vault and implement a 

(static) computer program that generates the required mapping. 

Such a task  is not a trivial problem, especially in the case of 

irregular vaults like those of historic buildings, which have 

geometric irregularities and anomalies. 

The mathematical problem behind the definition of the function 

𝑓 is not a simple task. Let us suppose that the idea is to 

implement an algorithm able to recover a suitable mapping for a 

specific vault. This is a challenging task not only for the 

intrinsic difficulties in finding a closed-form expressions with 

sufficient metric accuracy. The intrinsic deformations of historic 

vaults make the approach not replicable for other case vaults, 

which would require specific mapping functions. In other 

words, working with different vaults requires a continuous 

change of the mapping function.  

The use of photogrammetric or laser scanning point clouds 

allows one to collect metric information about the unknown 

mapping. A set of measured values (𝑥1𝑚, 𝑥2𝑚, 𝑥3𝑚) measured 

(index m) can be used to recover 𝑓 = 𝑝 + 𝑑 without separating 

the contribution of 𝑝 and 𝑑. The aim is to find a mapping 

function that provides a set of correspondences (𝑥1𝑚, 𝑥2𝑚) →
(𝑥3𝑚 + 𝑒), i.e. an approximate mapping with a “small” error 𝑒, 

which is acceptable and comparable with the expected metric 

accuracy of the final output or the chosen scale for the model. 

The mapping problem may be cast in the form 𝑓: 𝐷 ⊆ ℝ2 → ℝ. 

The function may also be expressed in the more common form 

𝑥3 = 𝑓(𝑥1, 𝑥2), which assumes that there is a direct mapping 

between the spatial coordinates 𝑥1, 𝑥2 and the vertical one  𝑥3.  

The proposed (automatic) solution that realizes this process 

without manual intervention is based on a neural network  

𝑁: 𝐷 ⊆ ℝ2 → ℝ that has the capability to learn and define the 

mapping from the measured punctual values (𝑥1𝑚, 𝑥2𝑚, 𝑥3𝑚). 

In other words, the algorithm has to learn on its own without the 

need to explicitly write the code, and the neural network has to 

approximate the function with an “acceptable” error ‖𝑁 − 𝑓‖ <
𝜖, so that we can say that 𝑁(𝑥1, 𝑥2) is an 𝜖-approximated 

interpolant of the function 𝑓.  

For an in-depth study of neural network, the reader is addressed 

to Haykin (2008). Here, only the main concepts will be briefly 

reviewed. To describe neural networks, we can start considering 

the most straightforward possible neural network, the one that 

comprises a single “neuron” (Figure 1).  

 

 
 

Figure 1. A diagram denoting a neural network                                      

with a single neuron. 

 

This “neuron” is a computational unit that takes as input x1,x2 

(and a +1 intercept term), and outputs 

hW,b(x3)=A(WTx)=f(∑2
i=1Wixi+b), where A:R↦R is called the 

activation function. In these paper we have used the sigmoid as 

activation function: 

 

𝐴(𝑡) =
1

1 + exp (−𝑡)
 (1) 

 

 

A neural network is obtained by hooking together many simple 

“neurons,” so that the output of a neuron can be the input of 

another. In the neural network presented in Figure 2 the leftmost 

layer of the network is called the input layer (x1, x2, +1), and the 

rightmost layer the output layer (which, in our examples, has 

only one node, x3). The middle layer of nodes is termed hidden 

layer. 

 

 
Figure 2. Diagram denoting a neural network with 2 input units 

(x1 and x2 not counting the bias unit), an hidden layer 

(composed of 3 hidden “neurons”) and 1 output unit (x3). 

 

ai
(l) is the output value (also called activation) of the neuron i in 

layer l and given a set of the parameters W,b the neural network 

defines a hypothesis hW,b(x) that outputs a real number. 

Specifically, the computation of the neural network in Figure 2 

is given by: 
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𝑎1
(1)

= 𝑓 (𝑊11
1 𝑥1 + 𝑊12

1 𝑥2 + 𝑏1
(1)

) 

𝑎2
(2)

= 𝑓 (𝑊21
1 𝑥1 + 𝑊22

1 𝑥2 + 𝑏2
(1)

) 

𝑎3
(2)

= 𝑓 (𝑊31
1 𝑥1 + 𝑊32

1 𝑥2 + 𝑏3
(1)

) 

ℎ𝑊,𝑏(𝑥) = 𝑓 (𝑊12
2 𝑎1

(1)
+ 𝑊12

2 𝑎2
(2)

+ 𝑊13
2 𝑎3

(2)
+ 𝑏1

(2)
) 

(2) 

 

A vector consisting of W(i,k)  is called weight vector. These 

weights are what makes each neuron unique. They are fixed 

during testing. During training such values are the numbers that 

the algorithms will change to ‘tune’ the network. 

Neural networks may present different architectures (i.e., 

patterns of connectivity between neurons). In particular, we may 

have neural networks with multiple hidden layers. The most 

common choice is a nl-layered network where each layer li is 

densely connected to layer li+1. In this setting, to compute the 

output of the network, we can successively compute all the 

activations in layer l2, then layer l3, and so on, up to layer ln. 

 

 
Figure 3. A diagram denoting a neural network 

with 2 hidden layers. 

 

An example of the presented method based on neural network is 

shown in Figure 4. The vault was scanned with a Faro Focus 

3D, obtaining point coordinates with an expected metric 

accuracy of about ±2 mm. A feed-forward neural network with 

a single hidden layer and 40 neurons (Figure 5) was trained 

using a subset of the original point clouds decimated using 

curvature information. Regression information on training, test 

and validation (70%, 15%, 15% of original dataset,  

respectively, see Figure 6) and a mean squared error (MSE) of 

4.02·10-3 , 4.12·10-3 , and 4.06·10-3 (the relationship between 

MSE and the more common root mean squares is RMS = 

(2·MSE)1/2) reveal that the network can approximate vault 

geometry with millimeter-level precision. 

 

  
Figure 4. The vault used to explain the procedure in section 2. 

 

 
Figure 5. The chosen network architecture 

for the vault in Figure 1. 

 
 

Figure 6. Regression lines for training, validation, and test 

datasets. 

 

3. TEST WITH SIMULATED DATA 

A presented in the previous section the main element 

constituting a neural network are the “neurons” and the 

architecture of the neural network itself (i.e., the number of 

layers in which the “neurons” are organized). This section 

aimed at investigating the viability of the proposed method for 

vault fitting and, in particular, to investigate the influence of the 

number of hidden layers net and the number on neurons in each 

of them.  

To perform this analysis, a set of syndetic data was generated. 

The aim of using simulated data sets was to discard the 

influence of noise in the data and allow an easier comparison 

between the output of the neural network and the original point 

cloud. 

In particular, two synthetic datasets were generated: 

 “Barrel vault” data set; and 

 “Cloister vault” data set 

Some details about the three datasets are provides into Table 1. 

 

 
Number of 

points 

Dimensions 

[m x m] 

Point cloud density 

[points / m2] 

“Barrel 

vault” 
4.000.000 3 x 5 ~ 85.000 

“Cloister 

vault” 
4.000.000 5 x 5 ~ 66.000 

Table 1. Details about the syntactic datasets used in this work.  

 

Such datasets were chosen for two main reasons. Firstly, barrel 

and cloister vaults represent a relevant number of real vaults. 

Secondly, the selected datasets presents a quite large variety of 

possible criticalities for neural network fitting. Indeed, even if a 

barrel vault is here represented by a simple shape (i.e., as a 

semi-cylinder), at the boundary of the barrel vault there are 

vertical tangency areas that could be critical. Cloister vaults, i.e. 

those obtained with the intersection of two semi-cylinders, are 

more complex than barrel vaults, also because the breaklines in 

correspondence of the intersection between the cylinders.  

The following procedure was used. First, the vault is 

approximated with a with a synthetic point cloud, which is then 

down-sampled to 10% of the original point cloud. Using this 
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subsampled data set a feed-forward neural network was trained 

splitting the points into a subset for training, test and validation 

(70%, 15%, 15% of the original dataset,  respectively). The 

trained network was used for recreating the original, not 

subsampled, point cloud. At this stage, the two point clouds 

(estimated and original) were compared.  

Several tests were performed with different neural network 

architectures (number of layers and number of neurons). Results 

seem to highlight two critical aspects of neuron network fitting 

applied to vaults: 

  

 sharp boundaries seem more problematic than regular 

surfaces (Figure 7 and Figure 9);  

 points characterized by vertical tangent planes are 

critical areas for the neural network (Figure 7). 

 

Results related to the number of hidden layers in the network 

along with the neurons into each layer show that: 

 

 for neural network with one layers only, increasing 

the number of neurons improves the accuracy of the 

final model (Figure 7 and Figure 8b-c). However, the 

estimated model seems to produce results affected by 

noise when the number of neurons is enlarged. The 

final data presents some bump artifacts (Figure 8d); 

 increasing the number of hidden layers allows sharp 

boundaries and areas with vertical tangent to be  

reconstructed more precisely (Figure 7, Figure 8, 

Figure 9 and Figure 10). 

 

a) b)  

c) d)  

Figure 7. Results for a synthetic barrel vault with a unique layer: 

(a) original point cloud; (b) result with 20 neurons; (c) results 

with 100 neurons; and (c) results with 200 neurons (color scale 

is the same for images b-c-d). 

 

a)  b)  

c) d)  

Fig. 8. Results for a synthetic barrel vault with a 10 neuron into 

each layer: (a) original point cloud; (b) result with 3 layers; (c) 

results with 5 layers; and (c) results with 7 layers (color scale is 

the same for images b-c-d). 

 

a)  b)  

c)  d)  

Figure 9. Results for a synthetic cloister vault with a unique 

layer: (a) original point cloud; (b) result with 50 neurons; (c) 

results with 200 neurons; and (c) results with 1000 neurons 

(color scale is the same for images b-c-d). 

 

a)  b)  

c)  d)  

Figure 10. Results for a synthetic cloister vault: (a) original 

point cloud; (b) result with 3 layers (10 neurons in each); (c) 

results with 3 layers (30 neurons in each); and (c) results with 3 

layers (50 neurons in each) (color scale is the same for images 

b-c-d). 

 

Barrel vault 

Neural Network 

Architecture 

Percentage of 

points < 0.005m 

Percentage of 

points < 0.001m 

1 Layer 20 neurons 100% 80.61% 

1 Layer 100 neurons 100% 85.34% 

1 Layer 200 neurons 100% 88.16% 

3 Layers 10 neurons 

each 
100% 93.21% 

5 Layers 10 neurons 

each 
100% 95.77% 

7 Layers 10 neurons 

each 
100% 98.85% 

Cloister vault 

Neural Network 

Architecture 

Percentage of 

points < 0.005m 

Percentage of 

points < 0.001m 

1 Layer 50 neurons 100% 85.23% 

1 Layer 200 neurons 100% 90.95% 

1 Layer 1000 

neurons 
95.32% 53.11% 

3 Layers 10 neurons 

each 
100% 89.30% 

3 Layers 30 neurons 

each 
100% 93.46% 

3 Layers 50 neurons 

each 
100% 95.21% 

Table 2. “Barrel Vault” and “Cloister vault” data set results.  
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A numerical comparison of the results achieved with the 

different neural networks was also performed. In particular, the 

percentage of points at absolute distances less than 0.005 m and 

0.001 m is estimated. Results of this comparison are reported in 

Table 2. These data confirm the previous considerations and the 

viability of the proposed method.   

 

4. TEST WITH REAL DATA 

Different tests were carried out with laser scanning datasets 

acquired with a Faro Focus 3D. Shown in Figure 11a are the 

results for an irregular barrel vault characterized by the 

uniqueness of its shape, for which basic primitives (e.g. a 

cylinder) cannot be used to approximate the surface when 

accurate reconstructions are required.  

The point cloud was decimated to 3,595 points to allow rapid 

estimation of network parameters. 20 neural networks with a 

variable number of neurons in the hidden layer (from 57 to 62) 

were estimated and the best 5 networks were selected. Results 

on a spatial domain that contains the planar projection of the 

vault were evaluated through a regular grid of 0.01 m x 0.01 m 

(Figure 11b). A solution to check the quality of the results for 

real case studies is to compare the results of the network with 

the original point cloud. Results with CloudCompare provided a 

discrepancy of 0.006±0.003 m (Figure 11c), which means that 

the neural network is a good approximation of the original point 

cloud. 

a)  
 

b)  
 

c)  
 

Figure 11. Results for a historic barrel vault: (a) provides a 

visualization of the original point cloud and the occlusion 

caused by a wire and a chandelier; (b) illustrates the recovered 

point cloud evaluated on a 0.01 m x 0.01 m grid; (c) provides a 

comparison between original and recovered point clouds, 

obtaining a final discrepancy of 0.006±0.003 m. 

 

The second case study is a cloister vault. Different scans were 

acquired to capture the vault but some occlusions were found 

after inspecting scans in the office, as shown in Figure 12a. 20 

neural networks were trained like in the previous case study, 

using 4,561 points and a variable number of neurons (from 65 

to 69). Data processing took less than 3 minutes and the results 

of the best 5 neural networks (average value) were used to 

create a new point cloud on a regular grid of 0.01 m x 0.01 m 

(Figure 12b). The final discrepancy estimated with 

CloudCompare between the averaged results and the original 

point cloud is 0.006±0.003 m. 

 

a)  

b)  

c)  

 

Figure 12. Results for a historic cloister vault: (a) provides a 

visualization of the original point cloud; (b) illustrates the 

recovered point cloud evaluated on a 0.01 m x 0.01 m grid; (c) 

provides a comparison between original and recovered point 

clouds, obtaining a final discrepancy of 0.006±0.003 m. 

 

The last case study is a pavilion vault in the “Centro Culturale 

Chiesa Vecchia” a former church in Calusco d’Adda (Italy). 

The point cloud of the vault is composed by more than 4 million 

points. In this case, different configurations of the neural 

network architecture were tested (Figure 13 and Table 3). 

Results seem to confirm the conclusions that were discussed 

about the simulated data sets. 
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Pavilion vault 

Neural Network 

Architecture 

Percentage of 

points < 0.005m 

Percentage of 

points < 0.003m 

1 Layer 50 neurons 98.26% 81.66% 

1 Layer 100 neurons 98.28% 84.01% 

1 Layer 1000 

neurons 
90.16% 83.16% 

3 Layers 20 neurons 

each 
98.03% 85.12% 

5 Layers 30 neurons 

each 
98.26% 86.69% 

 

Table 3. “Pavilion Vault” data set results. 

 

a.  b.  

c.  d.  

e.  f.  

 

Figure 13. Results for a historic pavilion vault: (a) provides a 

visualization of the original point cloud; (b) comparison results 

result with 1 layers 50 neurons; (c) comparison results result 

with 1 layers 100 neurons; (d) comparison results result with 1 

layers 1000 neurons; (e) comparison results result with 3 layers 

20 neurons each; and (f) comparison results result with 3 layers 

30 neurons each. 

 

5. CONCLUSION 

The paper presented a novel procedure for the reconstruction of 

vaults. The process could be intended as a strategy for 

“modeling without modeling” since the vault is mathematically 

reconstructed with a closed-form expression encapsulated in the 

numerical coefficients of a neural network. 

The method has advantages regarding memory occupation. The 

model of the vault is available after evaluating the computed 

network on a spatial domain. The parameters that must be 

stored are the code behind the network and the computed 

numerical coefficients. This is a simple textfile with very 

limited memory occupation. 

Network architecture has an essential role not only in the final 

metric quality of the method but also in the time required to 

estimate network coefficients. Other issues are related to the 

convergence of the solution, the number of hidden layers, the 

number of neurons on each layer, and the decimation procedure 

for the original point cloud. Additional work will focus on these 

issues, addressing the case of other input parameters. Indeed, 

more information captured by the laser scanner or digital 

cameras (e.g., intensity, RGB, …) can be used to train the 

network, extending the output to other parameters rather than 

just using z coordinates. 
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