StereoElectroEncephaloGraphy (SEEG) is a minimally invasive technique that consists of the insertion of multiple intracranial electrodes to precisely identify the epileptogenic focus. The planning of electrode trajectories is a cumbersome and time-consuming task. Current approaches to support the planning focus on electrode trajectory optimisation based on geometrical constraints but are not helpful to produce an initial electrode set to begin with the planning procedure. In this work, the authors propose a methodology that analyses retrospective planning data and builds a set of average trajectories, representing the practice of a clinical centre, which can be mapped to a new patient to initialise planning procedure. They collected and analysed the data from 75 anonymised patients, obtaining 30 exploratory patterns and 61 mean trajectories in an average brain space. A preliminary validation on a test set showed that they were able to correctly map 90% of those trajectories and, after optimisation, they have comparable or better values than manual trajectories in terms of distance from vessels and insertion angle. Finally, by detecting and analysing similar plans, they were able to identify eight planning strategies, which represent the main tailored sets of trajectories that neurosurgeons used to deal with the different patient cases.

Experience-based SEEG planning: From retrospective data to automated electrode trajectories suggestions

Scorza D.;De Momi E.;
2018-01-01

Abstract

StereoElectroEncephaloGraphy (SEEG) is a minimally invasive technique that consists of the insertion of multiple intracranial electrodes to precisely identify the epileptogenic focus. The planning of electrode trajectories is a cumbersome and time-consuming task. Current approaches to support the planning focus on electrode trajectory optimisation based on geometrical constraints but are not helpful to produce an initial electrode set to begin with the planning procedure. In this work, the authors propose a methodology that analyses retrospective planning data and builds a set of average trajectories, representing the practice of a clinical centre, which can be mapped to a new patient to initialise planning procedure. They collected and analysed the data from 75 anonymised patients, obtaining 30 exploratory patterns and 61 mean trajectories in an average brain space. A preliminary validation on a test set showed that they were able to correctly map 90% of those trajectories and, after optimisation, they have comparable or better values than manual trajectories in terms of distance from vessels and insertion angle. Finally, by detecting and analysing similar plans, they were able to identify eight planning strategies, which represent the main tailored sets of trajectories that neurosurgeons used to deal with the different patient cases.
2018
SEEG; retrospective data analysis; automated planning; surgical decision support; image guided susrgery
File in questo prodotto:
File Dimensione Formato  
Scorza et al. - 2018 - Experience-based SEEG planning from retrospective data to automated electrode trajectories suggestions.pdf

accesso aperto

Descrizione: Articolo Principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1089445
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact