This paper presents a novel Variable Structure Control (VSC) algorithm of Event- Triggered (ET) type, capable of dealing with a class of nonlinear uncertain systems. By virtue of its ET nature, the algorithm can be used as the kernel of a robust networked control system. The design objective is indeed to reduce the number of transmissions over the network. This has to be done while guaranteeing that the proposed ET-VSC is a stabilizing law with appropriate robustness property in front of matched uncertainties, even in presence of delayed transmissions. The proposed algorithm is theoretically analyzed in the paper, proving that the sliding variable associated with the controlled system results in being ultimately confined into a boundary layer of prescribed amplitude. As a consequence, it is proved that the state of the considered uncertain nonlinear system is ultimately bounded as well. Moreover, a lower bound for the time elapsed between consecutive triggering events is provided, which excludes the notorious Zeno behavior. Finally, the designed event- triggered variable structure control scheme is satisfactorily assessed in simulation.

Event-triggered variable structure control

Incremona, Gian Paolo;
2019-01-01

Abstract

This paper presents a novel Variable Structure Control (VSC) algorithm of Event- Triggered (ET) type, capable of dealing with a class of nonlinear uncertain systems. By virtue of its ET nature, the algorithm can be used as the kernel of a robust networked control system. The design objective is indeed to reduce the number of transmissions over the network. This has to be done while guaranteeing that the proposed ET-VSC is a stabilizing law with appropriate robustness property in front of matched uncertainties, even in presence of delayed transmissions. The proposed algorithm is theoretically analyzed in the paper, proving that the sliding variable associated with the controlled system results in being ultimately confined into a boundary layer of prescribed amplitude. As a consequence, it is proved that the state of the considered uncertain nonlinear system is ultimately bounded as well. Moreover, a lower bound for the time elapsed between consecutive triggering events is provided, which excludes the notorious Zeno behavior. Finally, the designed event- triggered variable structure control scheme is satisfactorily assessed in simulation.
2019
Variable Structure Control, Sliding Mode Control, Uncertain Systems
File in questo prodotto:
File Dimensione Formato  
etsmc_j.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1089284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact