The aim of this work is to provide an upper bound on the eigenvalues countingfunctionN(Rn,−∆ +V, e)of a Schr ̈odinger operator−∆ +V on R^n corresponding to a potentialV∈Ln2+ε(R^n, dx), in terms of the sum of the eigenvalues counting function of the DirichletintegralDwith Dirichlet boundary conditions on the subpotential domain{V < e}, endowedwith weighted Lebesgue measure(V−e)−·dxand the eigenvalues counting function of theabsorption-to-reflection operator on the equipotential surface{V=e}.
On the eigenvalue counting function for Schrödinger operator: some upper bounds
Cipriani Fabio
2018-01-01
Abstract
The aim of this work is to provide an upper bound on the eigenvalues countingfunctionN(Rn,−∆ +V, e)of a Schr ̈odinger operator−∆ +V on R^n corresponding to a potentialV∈Ln2+ε(R^n, dx), in terms of the sum of the eigenvalues counting function of the DirichletintegralDwith Dirichlet boundary conditions on the subpotential domain{V < e}, endowedwith weighted Lebesgue measure(V−e)−·dxand the eigenvalues counting function of theabsorption-to-reflection operator on the equipotential surface{V=e}.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cipriani Rendiconti 2018.pdf
accesso aperto
Descrizione: Articolo principale
:
Publisher’s version
Dimensione
378.93 kB
Formato
Adobe PDF
|
378.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.