The aim of this work is to provide an upper bound on the eigenvalues countingfunctionN(Rn,−∆ +V, e)of a Schr ̈odinger operator−∆ +V on R^n corresponding to a potentialV∈Ln2+ε(R^n, dx), in terms of the sum of the eigenvalues counting function of the DirichletintegralDwith Dirichlet boundary conditions on the subpotential domain{V < e}, endowedwith weighted Lebesgue measure(V−e)−·dxand the eigenvalues counting function of theabsorption-to-reflection operator on the equipotential surface{V=e}.

On the eigenvalue counting function for Schrödinger operator: some upper bounds

Cipriani Fabio
2018-01-01

Abstract

The aim of this work is to provide an upper bound on the eigenvalues countingfunctionN(Rn,−∆ +V, e)of a Schr ̈odinger operator−∆ +V on R^n corresponding to a potentialV∈Ln2+ε(R^n, dx), in terms of the sum of the eigenvalues counting function of the DirichletintegralDwith Dirichlet boundary conditions on the subpotential domain{V < e}, endowedwith weighted Lebesgue measure(V−e)−·dxand the eigenvalues counting function of theabsorption-to-reflection operator on the equipotential surface{V=e}.
File in questo prodotto:
File Dimensione Formato  
Cipriani Rendiconti 2018.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 378.93 kB
Formato Adobe PDF
378.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1087434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact