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On the eigenvalue counting function for Schrödinger
operator: some upper bounds

Fabio Cipriani

Abstract. The aim of this work is to provide an upper bound on the eigenvalues counting

function N(Rn,−∆+V, e) of a Schrödinger operator −∆+V on Rn corresponding to a potential

V ∈ L
n
2
+ε(Rn, dx), in terms of the sum of the eigenvalues counting function of the Dirichlet

integral D with Dirichlet boundary conditions on the subpotential domain {V < e}, endowed

with weighted Lebesgue measure (V − e)− · dx and the eigenvalues counting function of the

absorption-to-reflection operator on the equipotential surface {V = e}.

1 Introduction and description of the main results

To describe the content of the present work, we recall an iconic result of H. Weyl
[18] concerning a problem posed by the physicist H.A. Lorenz and stimulated by
problems arising in J. Jeans’ radiation theory, about the asymptotic distribution
of the eigenvalues 0 < λ1 ≤ · · · ≤ λk ≤ · · · (repeated according their multiplicity)
of the Laplace operator −∆ subject to Dirichlet conditions on the boundary ∂Ω
of a bounded domain Ω ⊂ Rn:

λk ∼ Cn · |Ω|−2/n · k2/n k → +∞ .

Hence, from the spectrum of −∆ geometric information can be extracted such
as the volume |Ω| of the region. If N(Ω,∆, µ) denote the number of eigenvalues,
counted according their multiplicity, not exceeding the value µ > 0, then the
Weyl’s result follows from the estimate

N(Ω,−∆, µ) ∼ Cn · |Ω| · µn/2 µ→ +∞
just noticing that N(Ω,−∆, λk) = k for any integer k ≥ 1.
Here Cn := (4π)−n/2Γ(1+n/2)−1 = (2π)−n/2 ·ωn is the so called classical constant,
ωn being the volume of the unit ball in Rn.

G. Pólya [15] proved that for domains tiling Rn, the following equivalent one-
side bounds

λk ≥ Cn · |Ω|−2/n · k2/n , k ≥ 1 , N(Ω,−∆, µ) ≤ Cn · |Ω| · µn/2 , µ ≥ 0
(1.1)
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and conjectured that these are true for all bounded domains. In this perspective,
E.H. Lieb [13] proved the above inequalities where the classical constant Cn is
replaced by a strictly greater one Ln > Cn.

Later, P. Li-S.T. Yau [11] obtained inequalities with the constants 2πn
e and nCn

n+2
which are worst than Lieb’s ones but that both agree with the Weyl’s asymptotic
result in the sense that Cn ∼ Ln ∼ 2πn

e ∼
nCn

n+2 .
While the works of G. Pólya [15] were motivated by problems arising in con-

tinuous mechanics and in particular those of vibrating membranes, those of E.H.
Lieb were motivated by problems in Quantum Mechanics. More specifically, by
the problem to bound above the number N(Rn,−∆ + V, µ) of eigenvalues of a
Schrödinger operator on Rn associated to a potential V . Lieb obtained, for poten-
tials V ∈ Ln/2(Rn, dx) on Rn with n ≥ 3, the upper bound

N(Rn,−∆ + V, µ) ≤ Ln ·
∫
Rn

(V − µ)
n/2
− · dx µ ∈ R (1.2)

from which, among other things, his one sided bound on N(Ω,−∆, µ) follows.
The bound for the eigenvalues of the Schrödinger operator are subtler than those
for the Laplace operator. For example, the former are definitely not true in low
dimension n = 1, 2. The bound (1.2) is referred as semiclassical because the
integral appearing in (1.2) is proportional by ωn/n to the volume of the region
{(p, q) ∈ Rn×Rn : |p|2 +V (q) ≤ µ} in the classical phase space. The semiclassical
bound was obtained independently (with different method) and published almost
simultaneously by M. Cwikel and G.V. Rosenbljum (with constants worst than
Ln) and it is often referred as the Cwikel-Lieb-Rosenbljum bound (see [13] for
details). In particular M. Cwikel exploited ideas introduced by B. Simon [16] who
previously proved an inequality of the form

N(Rn,−∆ + V, 0) ≤ Sn,ε ·
(
‖V−‖n/2+ε + ‖V+‖n/2+ε

)n/2
. (1.3)

for potentials V ∈ Ln/2+ε(Rn, dx), with Sn,ε → +∞ as ε → 0. The method
followed by [13] is based on a reduction argument leading to a Birman-Schwinger
compact operator [3, 17] followed by a Wiener integral representation of its trace.

In this work the method we follow to bound above N(Ω,−∆+V, e) for Ω ⊆ Rn
with n ≥ 3, is based not directly on considerations of self-adjoint, semibounded
operators but rather on properties of their corresponding quadratic forms, often
Dirichlet forms.

In Section 2 we reduce the problem to bound above N(Ω,−∆ + V, e) to the one
to bound above the number N(D, H1(Ue,me), 1) of eigenvalues not exceeding the
level 1 of the operator corresponding to the Dirichlet integral D on the space
L2(Ue,me) where Ue := {V < e} is the sublevel set of the potential V and the
background reference measure me := (V − e)− · dx is the Lebesgue one weighted
by the potential.

In Section 3 we study a family of quadratic forms (Eλ,F) on the boundary
space L2(∂Ue, µe) where ∂Ue := {V = e} is the level set of the potential V and µe
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is the measure on ∂Ue obtained averaging by me the family of harmonic measures
of ∂Ue. These forms are defined as traces, in the Sobolev or Dirichlet forms
sense, of quadratic forms on H1(Ue,me) associated to the subspaces of λ-harmonic
functions of finite energy. Forms in this family are termed absorption-to-reflection
quadratic forms to suggest that they are generalization of those associated to the
Dirichlet-to-Neumann operators of smooth Euclidean domains [1, 2, 8].

In particular we show that Eλ is bounded below by the Dirichlet form E0 up
to a constant multiple, depending on λ, of ‖ · ‖2L2(∂Ue,µe).

In Section 4 we first prove, for λ ≥ 0 in the resolvent set of (DUe , H
1
0 (Ue,me)), the

splitting

N((DUe
, H1(Ue,me)), λ) = N((DUe

, H1
0 (Ue,me)), λ) +N((Eλ,F), 0)

in terms of the counting function of the Dirichlet integral on the weighted Sobolev
subspace H1

0 (Ue,me) corresponding to Dirichlet boundary conditions on ∂Ue plus
the number of nonpositive eigenvalues of the absorption-to reflection quadratic
form (Eλ,F). The splitting above generalizes the one obtained by L. Friedlander [9]
in the proof of the Payne conjecture [14] about Dirichlet and Neumann eigenvalues
of Euclideans domains.

Subsequently, in the same Section 4, we show that N((Eλ,F), 0) is bounded
above by the eigenvalues counting number N((E0,F), ‖λ · Aλ‖). Here Aλ :=
−∆(−∆ − λ)−1 where −∆ is the operator whose quadratic form is the Dirich-
let form with Dirichlet boundary conditions (D, H1

0 (Ue,me)).

The final Section 5 is devoted to obtain Weyl upper bounds on the counting
functions above. In Section 5.1 we obtain the upper bound for λ ≥ 0

N((DUe
, H1

0 (Ue,me)), λ) ≤ e2dSdn · ‖(V − e)−‖2L1(Ue,dx) · ‖(V − e)−‖
d−2
Lp(Ue,dx) · λ

d

for a suitable effective dimension d depending upon p. In Section 5.2 we obtain,
for a suitable effective dimension m, the upper bound

N((E0,F), γ) ≤ e2m · ‖(V − e)−‖2L1(Ue,dx) · (c1γ + c2)m γ ≥ 0 ,

assuming that ∂Ue is smooth. Here the coefficients c1 , c2 depend upon some Lp-
norms of the Radon-Nikodym derivative of the boundary measure µe with respect
to the Hausdorff (n − 1)-dimensional measure of ∂Ue. In Section 5, the method
to bound above N((DUe

, H1
0 (Ue,me)) and N((E0,F), γ) is essentially the same:

we start from the classical Sobolev inequalities on Ue or from the Sobolev trace
inequalities in the ∂Ue case, then we prove Sobolev inequalities with respect to the
measures me on Ue or µe on ∂Ue. Then we use the Davies-Simon [6, 7] theory of
ultracontractivity to convert these informations into uniform boundedness of heat
kernels, then into bounds on the trace of the corresponding Markov semigroups
and finally into bounds on the eigenvalues counting functions.
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Warning: in the rest of the work an italic style letter “e” will continue to mean a
fixed level of the potential function V , while a roman style letter “e” will represent
the Neper number.

2 Schrödinger and Dirichlet energy integrals and compari-
son of their eigenvalues counting functions

In the following, when (E ,F) is a lower semibounded, closed quadratic form on
a Hilbert space H, we shall denote by N((E ,F), β) the number of eigenvalues,
counted according to their multiplicity, of the corresponding lower semibounded,
self-adjoint operator (L,D(L)) on H which do not exceed the value β ∈ R. In
other words, denoting by EL the spectral measure of (L,D(L)), we define

N((E ,F), β) := Tr(EL((−∞, β]))

as the trace of the spectral projection corresponding to the interval (−∞, β].
We shall denote by dx the Lebesgue measure of Rn and by BL(Ω) the space

of Beppo Levi functions (see [4])

BL(Ω) := {u ∈ L2
loc(Ω, dx) : |∇u| ∈ L2(Ω, dx)} .

Whenever Ω ⊆ Rn is an open set endowed with positive Radon measure m,
(DΩ, H

1(Ω,m)) will denote the Dirichlet integral

DΩ[u] :=

∫
Ω

|∇u(x)|2 · dx

defined on the space H1(Ω,m) := BL(Ω) ∩ L2(Ω,m).
We shall denote by (DΩ, H

1
0 (Ω,m)) the Dirichlet integral considered on the

subspace H1
0 (Ω,m) obtained as the closure of H1(Ω,m)∩C(Ω) in the graph norm

of H1(Ω,m). When m = dx the form (DΩ, H
1(Ω, dx)) is closed on L2(Ω, dx).

Moreover, C∞c (Ω) is a form core for (DD, H1
0 (Ω, dx)) and the corresponding non-

negative, self-adjoint operator is the Laplacian −∆ subject to Dirichlet boundary
conditions.

Assume V to be a negative, upper semicontinuous potential in the Kato class

V = −V− ∈ Kn(Ω, dx)

together with the (self-adjoint, lower semibounded) Schrödinger operator −∆ +V
whose (closed, symmetric, lower semibounded) quadratic form is given by

QV [u] := DΩ[u] +

∫
Ω

|u|2V dx u ∈ H1
0 (Ω, dx) .

For the background material on Schrödinger operators we refer to [5]. Fix a
nonpositive energy level e ≤ 0 and consider the open sublevel set

Ue := {x ∈ Ω : V (x) < e}
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of the potential energy, endowed with the weighted Lebesgue measure

me(dx) := (V − e)− dx .

Since V− is assumed to lies in the Kato class, H1
0 (Ω, dx) can be considered as a

subspace of H1(Ue,me).

Lemma 2.1. The Dirichlet integral

DUe
[u] :=

∫
Ue

|∇u|2 dx u ∈ H1(Ue,me)

is a Dirichlet form on L2(Ue,me).

Proof. Since the form is clearly Markovian, we have just to prove that it is closed.
Suppose that un ∈ H1(Ue,me) is a DUe

-Cauchy sequence converging to some u ∈
L2(Ue,me) in the norm of L2(Ue,me). Then, possibly passing to a subsequence,
we have that, me-a.e. on Ue, un → u. Since me and dx are equivalent on Ue,
we have also that, dx-a.e. on Ue, un → u. Since H1(ue,me) ⊂ BL(Ue), by the
properties of the DUe-convergence in BL(Ue), there exists a sequence of constants
cn and v ∈ BL(Ue) such that D[un − v] → 0 and un + cn → v in L2

loc(Ue,me).
Then, possibly passing to a subsequence, we have that, dx-a.e. on Ue, un+cn → v.
Hence, cn = (un + cn)− un → v − u, dx-a.e. on Ue. On the other hand, the limit
of a sequence of constant which converges dx-a.e. on Ue can only be a constant
function c on Ue, so that c = v − u, dx-a.e. on Ue. Since

D[un − u] = D[un − v + c]) = D[un − v]→ 0,

we have that un converges to u in the form norm of H1(Ue,me).

The following observation, appearing in [11, Corollary 2], is a reformulation of the
reduction argument of Birman and Schwinger which was also employed by [13].
While the Birman-Schwinger reduction identifies the numberN((QV ,H1

0 (Ω, dx)), e)
of eigenvalues of the Schrödinger operator −∆ − V− on L2(Ω, dx), not exceeding
the value e ≤ 0, with the number of eigenvalues of the Birman-Schwinger compact
operator (associated to the Birman-Schwinger kernel) greater or equal to 1, the fol-
lowing elementary observation compares N((QV , H1

0 (Ω, dx)), e) with the number
N((DUe

, H1(Ue,me)), 1) of eigenvalues of the Dirichlet integral (DUe
, H1(Ue,me))

on L2(Ue,me), not exceeding the value 1.

Lemma 2.2. For all λ ≥ 1, we then have

N((QV , H1
0 (Ω, dx)), e) ≤ N((DUe

, H1(Ue,me)), λ) .
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Proof. Since for all λ ≥ 1 and all u ∈ H1
0 (Ω, dx) we have

QV [u]− e‖u‖2L2(Ω,dx) = DΩ[u] +

∫
Ω

|u|2 · (V − e) dx

= DΩ[u] +

∫
Rn

|u|2 · (V − e)+ dx−
∫

Ω

|u|2 · (V − e)− dx

≥ DUe
[u]−

∫
Ue

|u|2 dme

≥ DUe
[u]− λ

∫
Ue

|u|2 dme ,

the subspace of H1
0 (Ω, dx) where the quadratic form QV is bounded by e with

respect to the norm of L2(Ω,m) is contained in (or it can be identified by restriction
with) the subspace of H1(Ue,me) where the Dirichlet integral DUe

is bounded by
1 with respect to the norm of L2(Ue, µe). The result then follows by the Min-Max
Theorem.

Remark 2.3. The above result can be restated saying that the number of bound
states of a quantum particle subject to a potential V , whose energy does not
exceed the level e ∈ R, is less or equal the number of bound states of energy
not exceeding the level 1 of a free particle moving in a background where the
reference measure me is the Lebesgue one weighted by the potential (V − e)−. It
can be considered as a quantum version of the Jacobi trick by which the orbits of
a classical particle moving under the influence of a potential V are geodesics of
the Jacobi (conformally equivalent) metric.

3 Absorption-to-Reflection quadratic forms and operators

The goal of the present section is to compare, in a natural way, the eigenvalues dis-
tribution of the Dirichlet integral DUe

when considered on the space H1(Ue,me)
to the eigenvalues distribution of the Dirichlet integral DUe

when considered the
space H1

0 (Ue,me), through the eigenvalues distributions of a family of operators
on the boundary ∂Ue. These operators, which from the point of view of Dirich-
let forms theory may be called absorption-to-reflection operators, generalize the
Dirichlet-to-Neumann operators on the boundary ∂Ω of smooth Euclidean domains
Ω, well studied in literature (see [1, 2, 8]). The difference lies in the fact that in-
stead of starting from the Sobolev space H1(Ω, dx) and its subspace H1

0 (Ω, dx)
we start from H1(Ω,m) and H1

0 (Ω,m), for a positive Radon measure m on Ω and
that the absorption-to-reflection operators on the boundary are closed with respect
to a measure on ∂Ω depending on m and no more with respect to the Hausdorff
(n− 1)-dimensional measure.

For λ ∈ R let us consider the space of finite energy, λ-harmonic functions

Hλ := {u ∈ H1(Ue,me) : DUe
(v|u)− λ(v|u)L2(Ue,me) = 0, v ∈ H1

0 (Ue,me)} .
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Lemma 3.1. Let us consider the quadratic form (DUe
, H1

0 (Ue,me)) on L2(Ue,me).
Then for any value λ /∈ σ(DUe

, H1
0 (Ue,me)), the following direct splitting holds true

H1(Ue,me) = H1
0 (Ue,me)⊕Hλ .

Recall that the extended Dirichlet space H1(Ue,me)e is the space of measurable
functions on Ue which are me-a.e. pointwise limits of DUe

-Cauchy sequences of the
Dirichlet space H1(Ue,me). If V is continuous and me is finite, then H1(Ue,me)e
reduces to the space BL(Ue) of Beppo Levi functions ([4, Theorem 2.2.14]).

Let us consider the level set ∂Ue = {V = e} ⊂ Ω of the potential energy, the
function space

F∂Ue := {u|∂Ue : u ∈ H1(Ue,me)e}

and the trace operator

Tr: H1(Ue,me)→ F∂Ue Tr(u) := u|∂Ue .

Since ker(Tr) = H1
0 (Ue,me), the previous splitting provides the following

Lemma 3.2. For any λ /∈ σ(DUe
, H1

0 (Ue,me)) we have

Tr(Hλ) = Tr(H1(Ue,me))

and the trace operator is a linear isomorphism between Hλand F :=Tr(H1(Ue,me)).

We introduce now the weak solution operator Lλ of the Dirichlet problem
associated to a Dirichlet space H1(Ue,me) on L2(Ue,me).

Lemma 3.3. For λ /∈ σ(DUe , H
1
0 (Ue,me)) a linear operator Lλ : F → Hλ is

defined assigning to ϕ ∈ F the unique Lλϕ ∈ Hλ such that Tr(Lλϕ) = ϕ.
The function Lλϕ ∈ H1(Ue,me) is the unique minimizer of the quadratic func-

tional

Lλ : H1(Ue,me)→ [0,+∞) Lλ[u] := Due [u]− λ‖u‖2L2(Ue,me)

on the set Cϕ := {u ∈ H1(Ue,me) : Tr(u) = ϕ}.

Proof. The Dirichlet integral DUe
, the norm square ‖·‖2L2(Ue,me) and the functional

Lλ are continuous functional on the Dirichlet space H1(Ue,me) endowed with the

Hilbertian norm
(
DUe

[·] + ‖ · ‖2L2(Ue,me)

)1/2
. Since Cϕ ⊂ H1(Ue,me) is a closed

and convex set, the existence and uniqueness follows from the projection theorem
on closed convex sets in Hilbert spaces.

Recall that we denote by −∆ the self-adjoint, nonnegative operator on L2(Ue,me)
whose closed quadratic form is the Dirichlet form (DUe

, H1
0 (Ue,me)).

Next results expresses the fact that the operators Lλ can be expressed through
the one corresponding to the value λ = 0 by a bounded operator which is functional
calculus of −∆.
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Lemma 3.4. Assuming

0 /∈ σ(DUe
, H1

0 (Ue,me))

and for any λ /∈ σ(DUe
, H1

0 (Ue,me)) the operator Aλ := −∆(−∆ − λ)−1 is self-
adjoint and bounded on L2(Ue,me) and on H1(Ue,me) and establishes a continu-
ous isomorphism between the spaces H0 and Hλ such that

Lλ = Aλ ◦ L0 .

Proof. The boundedness of Aλ on L2(Ue,me) follows from the Spectral Theorem
by the assumption that λ belongs to the resolvent set. The boundedness of Aλ on
H1(Ue,me) follows from

‖Aλu‖2H1(Ue,me) = ‖(−∆ + I)1/2(−∆)(−∆− λ)−1u‖22
= ‖(−∆)(−∆− λ)−1(−∆ + I)1/2u‖22
= ‖Aλ(−∆ + I)1/2u‖22
≤ ‖Aλ‖2L2→L2 · ‖(−∆ + I)1/2u‖22
= ‖Aλ‖2L2→L2 · ‖u‖2H1(Ue,me) u ∈ H1(Ue,me)

so that, in particular, ‖Aλ‖2H1→H1 ≤ ‖Aλ‖2L2→L2 . The invertibility of Aλ follows
from the assumptions 0, λ /∈ σ(DUe , H

1
0 (Ue,me)) and one may check that A−1

λ =
I − λ(−∆)−1.

Let ϕ ∈ F so that, by definition, L0ϕ ∈ H0, Lλϕ ∈ Hλ and Tr(L0ϕ) =
Tr(Lλϕ) = ϕ. Setting v := Lλϕ−L0ϕ ∈ H1(Ue,me), since Tr(v) = ϕ−ϕ = 0, we
have v ∈ H1

0 (Ue,me), so that

DUe(w|Lλϕ) = λ(w|Lλϕ)2

DUe(w|L0ϕ) = 0

DUe
(w|v) = λ(w|Lλϕ)2 w ∈ H1

0 (Ue,me) .

Hence Lλϕ− L0ϕ = v = (−∆)−1(λLλϕ) so that

Lλϕ = (−∆)(−∆− λ)−1L0ϕ = AλL0ϕ .

For our present purposes, it is convenient to restate the above result as a
relation between quadratic forms.

Lemma 3.5. For any λ /∈ σ(DUe
, H1

0 (Ue,me)), consider the quadratic form (Eλ,F)
defined as

Eλ[ϕ] := DUe [Lλϕ]− λ · ‖Lλϕ‖2L2(Ue,me) ϕ ∈ F .

Then, if 0 /∈ σ(DUe
, H1

0 (Ue,me)) we have

E0[ϕ]− Eλ[ϕ] = λ · (L0ϕ|AλL0ϕ)L2(Ue,me) ϕ ∈ F .
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Proof. Since Lλϕ ∈ Hλ and Lλϕ0 − L0ϕ ∈ H1
0 (Ue,me) we have

DUe
(L0ϕ|Lλϕ0 − L0ϕ) = 0 , DUe

(Lλϕ0 − L0ϕ|Lλϕ) = λ(Lλϕ0 − L0ϕ|Lλϕ) .

Then

Eλ[ϕ] = DUe [Lλϕ]− λ · ‖Lλϕ‖2L2(Ue,me)

= DUe [L0ϕ+ (Lλϕ− L0ϕ)]− λ · ‖Lλϕ‖2L2(Ue,me)

= DUe [L0ϕ] +DUe [Lλϕ− L0ϕ] + 2Re
(
DUe(L0ϕ|Lλϕ− L0ϕ)

)
− λ · ‖Lλϕ‖2L2(Ue,me)

= E0[ϕ] +DUe
(Lλϕ− L0ϕ|Lλϕ)−DUe

(Lλϕ− L0ϕ|L0ϕ)

− λ · ‖Lλϕ‖2L2(Ue,me)

= E0[ϕ] +DUe
(Lλϕ− L0ϕ|Lλϕ)− λ · ‖Lλϕ‖2L2(Ue,me)

= E0[ϕ] + λ · (Lλϕ− L0ϕ|Lλϕ)L2(Ue,me) − λ · ‖Lλϕ‖2L2(Ue,me)

= E0[ϕ]− λ · (L0ϕ|Lλϕ)L2(Ue,me)

= E0[ϕ]− λ · (L0ϕ|AλL0ϕ)L2(Ue,me) .

Let us recall that the Dirichlet space (DUe , H
1(Ue,me)) on L2(Ūe,1Ūe

· dx) is
regular in the sense of Dirichlet form theory (see [4]) if the involutive subalgebra
H1(Ue,me) ∩ C0(Ūe) is a form core, uniformly dense in C0(Ūe). This is the case,
for example, if Ue has continuous boundary in the sense of Maz’ya (see [4]) and in
particular if the potential V is continuous.

Lemma 3.6. If the Dirichlet space (DUe , H
1(Ue,me)) on L2(Ūe,1Ūe

· dx) is reg-
ular, then:

i) the algebra B := F ∩ C0(∂Ue) is uniformly dense in C0(∂Ue)

ii) the map L0 : B → H0 extends to a Markovian map from C0(∂Ue) to Cb(Ue)
and

iii) for any fixed x ∈ Ue there exists a unique probability measure µx on ∂Ue
such that

(L0ϕ)(x) =

∫
∂Ue

ϕdµx ϕ ∈ B .

Proof. i) The result follows from H1(Ue,me) ∩ C0(Ūe) ⊆ B and the regularity
assumption. ii) By the Maximum Principle for harmonic functions, 0 ≤ L0ϕ ≤ 1
for all ϕ ∈ B such that 0 ≤ ϕ ≤ 1. The map L0 is then continuous w.r.t. the
uniform norm and, since B is norm dense in C0(∂Ue), it extends to a Markovian
map from C0(∂Ue) to Cb(∂Ue). iii) The functional ϕ 7→ (L0ϕ)(x) is then positive
on C0(∂Ue) and it can be represented by a positive measure µx on ∂Ue. Since
L01 = 1 we have µx(∂Ue) = (L01)(x) = 1.
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The measures {µx : x ∈ Ue} on ∂Ue are the harmonic measures of the Euclidean
domain Ue. In particular, like the operator L0, they are independent upon the
measure me and a fortiori upon the potential.

Next results show that the measure me = (V −e)− ·dx on Ue and the family of
harmonic measures provide a natural measure on the boundary ∂Ue with respect
to which the difference between the quadratic forms above can be conveniently
considered.

Lemma 3.7. Assume the Dirichlet space (DUe
, H1(Ue,me)) on L2(Ūe,1Ūe

· dx)
to be regular and consider the positive measure µe on ∂Ue defined by

µe :=

∫
Ue

me(dx)µx .

Then, under the assumption

0 /∈ σ(DUe
, H1

0 (Ue,me))

and for any λ /∈ σ(DUe
, H1

0 (Ue,me)), the quadratic forms E0 and Eλ differ by a
bounded quadratic form on the Hilbert space L2(∂Ue, µe). In particular we have∣∣∣E0[ϕ]− Eλ[ϕ]

∣∣∣ ≤ ‖λ ·Aλ‖L2(Ue,me)→L2(Ue,me) · ‖ϕ‖2L2(∂Ue,µe) ϕ ∈ F .

Proof. By Hölder inequality, for all ϕ ∈ B we have

‖L0ϕ‖2L2(∂Ue) =

∫
Ue

|(L0ϕ)(x)|2me(dx) =

∫
Ue

me(dx)
∣∣∣∫
∂Ue

ϕ(y)µx(dy)
∣∣∣2

≤
∫
Ue

me(dx)

∫
∂Ue

|ϕ(y)|2 µx(dy)

= ‖ϕ‖2L2(∂Ue,µe) .

Thus L0 extends to a contraction on from L2(∂Ue, µe) to L2(Ue,me) and, by
Lemma 3.5 above, we have for ϕ ∈ F∣∣∣E0[ϕ]− Eλ[ϕ]

∣∣∣ = (L0ϕ|λ ·AλL0ϕ)L2(Ue,me)|

≤ ‖λ ·Aλ‖L2(Ue,me)→L2(Ue,me) · ‖ϕ‖2L2(∂Ue,µe) .

Lemma 3.8. Assume the Dirichlet space (DUe , H
1(Ue,me)) on L2(Ūe,1Ūe

· dx)
to be regular and 0 /∈ σ(DUe , H

1
0 (Ue,me)). Then, for any λ /∈ σ(DUe , H

1
0 (Ue,me)),

the quadratic forms (E0,F) and (Eλ,F) are closed on L2(∂Ue, µe). In particular,
the former is nonnegative, the latter is lower semibounded and the following bound
holds true

E0[ϕ]− ‖λAλ‖ · ‖ϕ‖2L2(∂Ue,µe) ≤ Eλ[ϕ] ϕ ∈ F .

Finally, (E0,F) is a Dirichlet form on L2(∂Ue, µe).
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Remark 3.9. For λ /∈ σ(DUe
, H1

0 (Ue,me)), the self-adjoint operator Bλ on the
Hilbert space L2(∂Ue, µe) whose quadratic form is (Eλ,F) will be called the λ-
absobtion-to-reflection operator of the Dirichlet space (DUe

, H1(Ue,me)). In par-
ticular, if 0 /∈ σ(DUe , H

1
0 (Ue,me)), the nonnegative, self-adjoint operatorB0 will be

called the absorption-to-reflection operator of the Dirichlet space (DUe , H
1(Ue,me)).

4 Comparison of eigenvalues counting functions

The following is the main result of the work.
Let us denote by N((Eλ,F), 0) the number of nonpositive eigenvalues of the

quadratic form (Eλ,F) of the λ-absorption-to-reflection operator Bλ on the Hilbert
space L2(∂Ue, µe).

Notice that the set of λ ≥ 1 for which λ /∈ σ(DUe
, H1

0 (Ue,me)) is not empty if, for
example, σ(DUe

, H1
0 (Ue,me)) is discrete.

Theorem 4.1. Assume the Dirichlet space (DUe , H
1(Ue,me)) on L2(Ūe,1Ūe

· dx)
to be regular. Then, for any λ /∈ σ(DUe , H

1
0 (Ue,me)) we have

N((DUe
, H1(Ue,me)), λ) = N((DUe

, H1
0 (Ue,me)), λ) +N((Eλ,F), 0) (4.1)

and

N((DUe
, H1(Ue,me)), λ) ≤ N((DUe

, H1
0 (Ue,me)), λ)+N((E0,F), ‖λ·Aλ‖) , (4.2)

If moreover λ ≥ 1, we have

N((QV , H1
0 (Ω, dx)), e) ≤ N((DUe

, H1
0 (Ue,me)), λ) +N((E0,F), λ‖Aλ‖) . (4.3)

Proof. Consider the closed, quadratic form

Lλ : H1(Ue,me)→ [0,+∞) Lλ[u] := DUe
[u]− λ · ‖u‖L2(Ue,me)

and notice that the direct splittingH1(Ue,me) = H1
0 (Ue,me)⊕Hλ is Lλ-orthogonal

Lλ[u0 + uλ] = Lλ[u0] + Lλ[uλ] u0 ⊕ uλ ∈ H1
0 (Ue,me)⊕Hλ .

Let M ⊂ H1(Ue,me) (resp. M0 ⊂ H1
0 (Ue,me),Mλ ⊂ Hλ) be the subspace where

Lλ is negative on H1(Ue,me) (resp. H1
0 (Ue,me), Hλ) so that

N((DUe
, H1(Ue,me)), λ) = dim(M) and N((DUe

, H1
0 (Ue,me)), λ) = dim(M0) .

If we consider M ′0 := M ∩ H1
0 (Ue,me) and M′λ := M ∩Mλ, we have M ′0 ⊆ M0

and M′λ ⊆Mλ so that dim(M) = dim(M ′0) + dim(M′λ) ≤ dim(M0) + dim(Mλ).
On the other hand, since M0 andMλ are Lλ-orthogonal, we have M0⊕Mλ ⊆M
so that dim(M0) + dim(Mλ) ≤ dim(M) and

dim(M)− dim(M0) = dim(Mλ) .
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Notice now that the quadratic form (Lλ,Hλ) considered on the Hilbert space
L2(Ue,me) is isomorphic under the Markovian map L0 : L2(∂Ue, µe)→ L2(Ue,me)
to the quadratic form (Eλ,F) on the Hilbert space L2(∂Ue, µe)

Eλ[ϕ] := Lλ[L0ϕ] F := F∂Ue ∩ L2(∂Ue, µe) .

Since the quadratic form (Eλ,F) on the Hilbert space L2(∂Ue, µe) is closed, we
have dim(Mλ) = N((Eλ,F), 0) so that dim(M)− dim(M0) = N((Eλ,F), 0). The
other bounds follow from previous lemma.

5 Weyl’s type bounds on eigenvalues counting functions

In the following sections we provide Weyl’s type bounds on the eigenvalues count-
ing function of the Dirichlet forms (D, H1

0 (Ue,me)) on L2(Ue,me) and (E0,F) on
L2(∂Ue, µe).

5.1

In this section we show how to bound the first term N((DUe , H
1
0 (Ue,me)), λ) in

the above evaluation of N((DUe
, H1(Ue,me)), λ). Under an hypothesis of Lp-

integrability of (V − e)−, for some p > n/2 and for n ≥ 3, we prove initially
a Sobolev inequality for the Dirichlet form (DUe

, H1
0 (Ue,me)) on the weighted

Lebesgue space L2(Ue,me).
Then, using the Davies-Simon theory [6, 7], we turn these into a family of

logarithmic Sobolev inequalities to prove that the Markov semigroup associated
to (DUe

, H1
0 (Ue,me)) is ultracontractive on L2(Ue,me).

Finally, assuming (V − e)− to be integrable, we show that the Markovian
semigroup is nuclear so that the spectrum of its generator is discrete and that an
upper bound of Weyl’s type holds true on N((DUe , H

1
0 (Ue,me)), λ).

Recall the Sobolev inequality for the Euclidean domain Ue ⊆ Rn, n ≥ 3,

‖u‖2Ln∗ (Ue,dx) ≤ Sn · DUe
[u] u ∈ H1

0 (Ue, dx) ,

where the best constant is given by

Sn :=
1

n(n− 2)π

( Γ(n)

Γ(n/2)

)2/n

.

Lemma 5.1. Suppose (V −e)− ∈ Lp(Ω, dx) for some p > n/2 and set n∗ :=
2n

n− 2
,

n ≥ 3. Then the following weighted Sobolev inequality holds true

‖u‖2Lr(Ue,me) ≤ Sr(Ue,me) · DUe
[u] u ∈ H1

0 (Ue,me)

for r := n∗(1− p−1) > 2 and the Sobolev constant

Sr(Ue,me) := Sn · ‖(V − e)−‖2/rLp(Ω,dx) .
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Proof. Setting q := (1− p−1)−1 we have rq = n∗ so that

‖u‖2Lr(Ue,me) =
(∫

Ue

|u|r(V − e)− dx
)2/r

≤
(∫

Ue

|u|rq dx
)2/rq

·
(∫

Ue

(V − e)p− dx
)2/rp

= ‖u‖2Ln∗ (Ue,dx) · ‖(V − e)−‖
2/r
Lp(Ω,dx)

≤ Sn · ‖(V − e)−‖2/rLp(Ω,dx) · DUe [u] u ∈ H1
0 (Ue,me) .

Let Le be the nonnegative, self-adjoint operator on L2(Ue,me) whose quadratic
form is the Dirichlet form (DUe

, H1
0 (Ue,me)).

Lemma 5.2. Suppose (V − e)− ∈ Lp(Ω, dx), for some p > n/2, n ≥ 3. The
Markovian semigroup e−tLe on L2(Ue,me) is then ultracontractive

‖e−tLe‖L2→L∞ ≤
(

e(d/4)Sr(Ue,me)
)d/4

· t−d/4 t > 0

and its heat kernel is bounded by

e−tLe(x, y) ≤ c · t−d/2 me − a.e. x, y ∈ Ue ,

where d := 2r
r−2 > n and c :=

(
ed2Sr(Ue,me)

)d/2
.

Proof. Ultracontractivity follows from the weighted Sobolev inequality applying
[6, Thm. 2.4.2]

‖e−tLe‖L2→L∞ ≤ c · t−
2r

r−2 t > 0 .

To evaluate explicitly the constant c > 0, notice that, following the proof of [6,
Thm. 2.4.2], the Sobolev inequality implies the logarithmic Sobolev inequalities∫

Ue

|u|2 ln |u| dme ≤ (d/4) ·
(
− ln ε+ ε · Sr(Ue,me) · DUe [u]

)
ε > 0

for all norm one functions u ∈ H1
0 (Ue,me) and d := 2r

r−2 . By rescaling, these
appear as ∫

Ue

|u|2 ln |u| dme ≤ ε · DUe [u] + β(ε) ε > 0

for β(ε) := (d/4) ln(rSr(Ue,me)/4)− (d/4) ln ε. By [6 Corollary 2.2.8] we have

‖e−tLe‖L2→L∞ ≤ e
1
t

∫ t
0
β(ε) dε =

(
e(d/4)Sr(Ue,me)

)d/4
· t−d/4 t > 0 .

By [6, Lemma 2.1.2] we then have the stated uniform upper bound on the heat
kernel.
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Lemma 5.3. Suppose (V − e)− ∈ L1(Ω, dx)∩Lp(Ω, dx) for some p > n/2, n ≥ 3.
Then

• the spectrum of the Dirichlet form (DUe
, H1

0 (Ue,me)) on L2(Ue,me) is dis-
crete,

• the associated Markovian semigroup is nuclear and

Tr(e−tLe) ≤ ‖(V − e)−‖2L1(Ω,dx) ·
(
edSr(Ue,me)

)d
· t−d t > 0.

Proof. Since me(Ue) =
∫
Ue

(V − e)− dx = ‖(V − e)−‖L1(Ω,dx) < +∞, by Lemma

2.12 and [6, Thm 2.1.4], the spectrum of the Dirichlet form (DUe
, H1

0 (Ue,me)) on
L2(Ue,me) is discrete and

Tr(e−tLe) ≤ me(Ue)
2 · c(t/4)4 t > 0

where c(t) := ‖e−tLe‖L2→L∞ . The stated bound follows from previous lemma.

Theorem 5.4. Suppose (V − e)− ∈ L1(Ω, dx) ∩ Lp(Ω, dx) for some p > n/2,
n ≥ 3. Then the following bound holds true

N((DUe , H
1
0 (Ue,me)), λ) ≤ e2dSdn · ‖(V − e)−‖2L1(Ue,dx) · ‖(V − e)−‖

d−2
Lp(Ue,dx) · λ

d ,

λ ≥ 0. In particular, if Ue = {V < e} has finite Lebesgue measure, we have

N((DUe
, H1

0 (Ue,me)), λ) ≤ e2dSdn · |Ue|2 · ‖(V − e)−‖dLp(Ω,dx) · λ
d λ ≥ 0 .

Proof. Since χ(−∞,λ](x) ≤ e−t(x−λ) for all x ∈ R, λ ≥ 0 and t > 0, we have

N((DUe , H
1
0 (Ue,me)), λ) = Tr(χ(−∞,λ](Le)) ≤ Tr(e−t(Le−λ))

≤ ‖(V − e)−‖2L1(Ω,dx) ·
(
edSr(Ue,me)

)d
· etλ · t−d .

Choosing t = d/λ we obtain

N((DUe , H
1
0 (Ue,me)), λ) ≤ ‖(V − e)−‖2L1(Ω,dx) ·

(
e2Sr(Ue,me)

)d
· λd λ ≥ 0 .

By Lemma 5.1 and, in particular, from the evaluation

Sr(Ue,me) ≤ Sn∗(Ue, dx) · ‖(V − e)−‖2/rLp(Ω,dx) ,

we have

N((DUe
, H1

0 (Ue,me)), λ) ≤ ‖(V − e)−‖2L1(Ω,dx) ·
(

e2Sn · ‖(V − e)−‖2/rLp(Ω,dx)

)d
· λd,

λ ≥ 0, which provides the first stated bound since r = 2d
d−2 implies 2d

r = d − 2.
The second one follows from Hölder inequality.
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5.2

To bound aboveN((E0,F), λ‖Aλ‖) we prove Sobolev inequalities for the absorption-
to-reflection Dirichlet form (E0,F) on L2(∂Ue, µe),

assuming that Ue ⊂ Rn, n ≥ 3, is bounded and its boundary ∂Ue is smooth.

On ∂Ue let σ be the (n− 1)-dimensional Hausdorff measure and consider also the
measure

νe :=

∫
Ue

dxµx .

The harmonic measures and the measure νe depend upon the potential V only
through the open set Ue := {V < e}.

Lemma 5.5. The following boundary Sobolev inequality

‖ϕ‖2Lq(∂Ue,σ) ≤ S · E0[ϕ] + b · ‖ϕ‖2L2(∂Ue,νe) ϕ ∈ F (5.1)

holds true for some b ∈ R, q := 2(n−1)
n−2 and S := 2

n−2 · ω
1

1−n
n , where ωn is the

volume of the unit sphere in Rn.

Proof. Let us consider the following Sobolev trace inequality [12, Thm 0.1]

‖Tr(u)‖2Lq(∂Ue,σ) ≤ S · DUe
[u] + b · ‖u‖2L2(Ue,dx) u ∈ H1(Ue, dx) .

Choosing u = L0ϕ we have Tr(L0ϕ) = ϕ and, since by definitionDUe
[L0ϕ] = E0[ϕ],

we get

‖ϕ‖2Lq(∂Ue,σ) ≤ S · E0[ϕ] + b · ‖L0ϕ‖2L2(Ue,dx) ϕ ∈ F .

Since moreover

‖L0ϕ‖2L2(Ue,dx) =

∫
Ue

dx
∣∣∣∫
∂Ue

ϕ(y) · µx(dy)
∣∣∣2 ≤ ∫

Ue

dx

∫
∂Ue

|ϕ(y)|2 · µx(dy)

= ‖ϕ‖2L2(∂Ue,νe) ,

we obtain the stated inequalities.

Lemma 5.6. The Radon-Nikodym derivative of the measure νe with respect to
the Hausdorff measure σ is a continuous, nowhere vanishing function on ∂Ue and
there exists a constant cP > 0 such that∥∥∥dνe

dσ

∥∥∥
C(∂Ue)

≤ cP · ωn−1 · diam(Ue) .

Proof. Notice that the harmonic measures µx on ∂Ue are absolutely continuous
with respect to the Hausdorff measure σ and that their Radon-Nikodym derivatives
are represented by the Poisson kernel h : Ue × ∂Ue → [0,+∞): µx = h(x, ·)σ.
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Hence, also the measure νe is absolutely continuous with respect to σ, with Radon-
Nikodym derivative given by

νe(dy) =
(∫

Ue

dxh(x, y)
)
· σ(dy) .

Notice also that, since the function Ue 3 x 7→ h(x, y) is harmonic and nonnegative,
it cannot vanish otherwise would be identically zero, by the Maximum Principle.
In particular, h(x, y) > 0 for all (x, y) ∈ Ue × ∂Ue and then

∫
Ue
dxh(x, y) > 0 for

all y ∈ ∂Ue.
By a result due to Krantz [10], there exists a constant cP > 0 such that the

Poisson kernel hU : U × ∂U → [0,+∞) of a bounded, smooth domain U ⊂ Rn is
bounded by

1

cP
· d(x, ∂U)

|x− y|n
≤ hU (x, y) ≤ cP ·

d(x, ∂U)

|x− y|n
(x, y) ∈ U × ∂U .

Applying the result to Ue and since d(x, ∂Ue) ≤ |x− y| for all y ∈ ∂Ue, we have∫
Ue

dxh(x, y) ≤ cP ·
∫
Ue

dx |x− y|1−n ≤ cP ·
∫
B(y,diam(Ue))

dx |x− y|1−n

≤ cP ·
∫
B(0,diam(Ue))

dz |z|1−n = cP · ωn−1 ·
∫ diam(Ue)

0

dr rn−1 · r1−n

= cP · ωn−1 · diam(Ue) .

By a similar calculation, for γ ∈ (1, n
n−1 ) we have∫

Ue

dxh(x, y)γ ≤ cP · ωn−1 ·
∫ diam(Ue)

0

dr rn−1 · rγ(1−n)

= cP ·
ωn−1 · diam(Ue)

n−γ(n−1)

n− γ(n− 1)
< +∞

so that the family {h(·, y) ∈ L1(Ue, dx) : y ∈ ∂Ue} is bounded in Lγ(Ue, dx). Con-
sequently, by the de la Vallée Poussin test, it is uniformly bounded in L1(Ue, dx).
Since, moreover, for any fixed x ∈ Ue, the function h(x, ·) is continuous on ∂Ue,
applying the Vitali convergence Theorem we have

lim
z→y

∫
Ue

dxh(x, z) =

∫
Ue

dxh(x, y) y ∈ ∂Ue .

The Radon-Nikodym derivative
dνe
dµe

is then a continuous function on the boundary

∂Ue.

It is not clear how to bound above cP geometrically.
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Lemma 5.7. Suppose (V − e)− ∈ Lp(Ω, dx) for some p > n/2, n ≥ 3. The
Radon-Nikodym derivative of µe with respect to σ is in Lp(∂Ue, σ) and∥∥∥dµe

dσ

∥∥∥
Lp(∂Ue,σ)

≤
∥∥∥dνe
dσ

∥∥∥1− 1
p

C(∂Ue)
· ‖(V − e)−‖Lp(Ue,dx) .

Proof. Setting W := (V − e)−, Hölder inequality we have∫
∂Ue

σ(dy)
∣∣∣dµe
dσ

(y)
∣∣∣p =

∫
∂Ue

σ(dy)
∣∣∣∫
Ue

dxh(x, y)W (x)
∣∣∣p

=

∫
∂Ue

σ(dy)
∣∣∣(∫

Ue

dxh(x, y)
)
·
(∫

Ue

dxh(x, y)
)−1

·
∫
Ue

dxh(x, y)W (x)
∣∣∣p

=

∫
∂Ue

σ(dy)
(∫

Ue

dxh(x, y)
)p∣∣∣(∫

Ue

dxh(x, y)
)−1

·
∫
Ue

dxh(x, y)W (x)
∣∣∣p

≤
∫
∂Ue

σ(dy)
(∫

Ue

dxh(x, y)
)p−1

·
∫
Ue

dxh(x, y)W (x)p

≤
(
c · ωn−1 · diam(Ue)

)p−1 ·
∫
Ue

dxW (x)p
∫
∂Ue

σ(dy)h(x, y)

=
∥∥∥dνe
dσ

∥∥∥p−1

C(∂Ue)
·
∫
Ue

dxW (x)pL0(1)(x)

=
∥∥∥dνe
dσ

∥∥∥p−1

C(∂Ue)
·
∫
Ue

dxW (x)p

=
∥∥∥dνe
dσ

∥∥∥p−1

C(∂Ue)
· ‖W‖pLp(Ue,dx) .

Lemma 5.8. The Radon-Nikodym derivative of νe with respect to µe is essentially
uniformly bounded with respect to the Hausdorff measure σ

Proof. Setting W := (V − e)− we have

dµe
dνe

(y) =

∫
Ue
dxh(x, y)W (x)∫
Ue
dxh(x, y)

y ∈ ∂Ue .

Consider now the function g : ∂Ue → R defined by

g(y) :=

∫
Ue
dxh(x, y)(W ∧ 1)(x)∫

Ue
dxh(x, y)

y ∈ ∂Ue

so that
dµe
dνe

(y) ≥ g(y) for all y ∈ ∂Ue.

By a previous lemma, the function ∂Ue 3 y 7→
∫
Ue
dxh(x, y) is continuous.

Since the function W ∧ 1 is bounded, one may prove by the same method, that
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the function ∂Ue 3 y 7→
∫
Ue
dxh(x, y)(W ∧ 1)(x) is continuous too. Thus g is a

nonnegative, continuous function on the compact set ∂Ue attaining its minimum
value g(y0) at some point y0 ∈ ∂Ue. Since, however, the value g(y0) is, by defini-
tion, the mean value of the nonnegative function W ∧ 1 with respect to the finite
measure h(x, y0)dx on Ue, it cannot vanish unless W = (V − e)− = 0 dx-almost
everywhere x ∈ Ue. This is a contradiction since our running hypothesis is that
Ue := {V < e} is a nonempty, open set. This shows that

dνe
dµe

(y) ≤ 1

g(y0)
< +∞ σ−a.e. y ∈ ∂Ue .

Lemma 5.9. Suppose (V − e)− ∈ L1(Ω, dx)∩Lp(Ω, dx) for some p > n/2, n ≥ 3
and set s ∈ [1, q) such that 1

p + s
q = 1. Then the following Sobolev inequality holds

true

‖ϕ‖2Ls(∂Ue,µe) ≤ c1 · E0[ϕ] + c2 · ‖ϕ‖2L2(∂Ue,µe) ϕ ∈ F (5.2)

where c1 := S ·
∥∥∥∥dµedσ

∥∥∥∥2/s

Lp(∂Ue,σ)

and c2 := b ·
∥∥∥∥dµedσ

∥∥∥∥2/s

Lp(∂Ue,σ)

·
∥∥∥∥ dνedµe

∥∥∥∥
C(∂Ue)

.

Proof. In the following we shall denote by ke : ∂Ue → R the Radon-Nikodym
derivative of µewith respect to σ. By Hölder inequality we have

‖ϕ‖sLs(Ue,µe) =

∫
∂Ue

µe(dy) |ϕ(y)|s =

∫
Ue

me(dx)

∫
∂Ue

µx(dy)|ϕ(y)|s

=

∫
∂Ue

σ(dy)|ϕ(y)|s ·
(∫

Ue

me(dx)h(x, y)
)

=

∫
∂Ue

σ(dy)|ϕ(y)|s · ke(y)

≤
(∫

∂Ue

σ(dy) |ϕ(y)|s
q
s

) s
q ·
(∫

∂Ue

σ(dy)|ke(y)|p
) 1

p

= ‖ϕ‖sLq(∂Ue,σ) · ‖ke‖Lp(∂Ue,σ)

≤ ‖ke‖Lp(∂Ue,σ) ·
(
S · E0[ϕ] + b · ‖ϕ‖2L2(∂Ue,νe)

) r
2

≤ ‖ke‖Lp(∂Ue,σ) ·
(
S · E0[ϕ] + b · ‖ dνe

dµe
‖L∞(∂Ue,σ) · ‖ϕ‖2L2(∂Ue,µe)

) s
2

.

Theorem 5.10. Suppose (V − e)− ∈ L1(Ω, dx) ∩ Lp(Ω, dx) for some p > n/2,
n ≥ 3 and set r ∈ [1, q) such that 1

p + r
q = 1. Choose r ∈ (2, q] such that 1

p + r
q = 1,

where q := 2(n−1)
n−2 .
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i) Then, the Markovian semigroup e−tB0 is ultracontractive on L2(∂Ue, µe) and

‖e−tB0‖L2→L∞ ≤
(

e
m

4
c1

)m/4
· e

c2
c1
t · t−m/4 t > 0 , (5.3)

where m :=
2r

r − 2
.

ii) If moreover ‖(V − e)−‖L1(Ω,dx) < +∞, then the semigroup is nuclear with

Tr(e−tB0) ≤
(
emc1

)m · ‖(V − e)−‖2L1(Ω,dx) · e
c2
c1
t · t−m t > 0 , (5.4)

iii) and the following bound hold true

N((E0,F), γ) ≤ e2m · ‖(V − e)−‖2L1(Ω,dx) · (c1γ + c2)m γ ≥ 0 . (5.5)

Proof. The proof of the first statement i) follows from the Sobolev inequalities
(5.2) above along exactly the same lines of the proof of Lemma 5.2. Since, by
hypothesis,

µe(∂Ue) =

∫
Ue

me(dx)

∫
∂Ue

1 · µx(dy) =

∫
Ue

1 ·me(dx) = ‖(V − e)−‖L1(Ω,dx)

is finite, the second statement ii) follows from i) by an application of [5, Thm.
2.1.4]. Finally, the last statement iii) follows from ii) optimizing over t > 0 the
bound

N((E0,F), γ) ≤ eγt · Tr(e−tB0) t > 0 .
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