Shear behaviour in reinforced concrete (RC) elements can improve with an adequate amount of fibres. Research has recently determined how fibres affect shear strength, but has barely focused on macro-synthetic fibre-reinforced concrete (PFRC). This paper presents the experimental results of 16 full-scale beams (eight RC, eight PFRC), 12 without transverse reinforcement. Polypropylene fibres (10 kg/m 3 ) were included. Mode of failure (MOF) in shear and behaviour throughout the loading process were studied. The results obtained with fibres showed significantly improved shear strength in the RC beams with/without transverse reinforcement. A synergy between transverse reinforcement and fibres was observed in some cases.
An experimental study on the shear behaviour of reinforced concrete beams with macro-synthetic fibres
Serna, P.;Cuenca, E.
2018-01-01
Abstract
Shear behaviour in reinforced concrete (RC) elements can improve with an adequate amount of fibres. Research has recently determined how fibres affect shear strength, but has barely focused on macro-synthetic fibre-reinforced concrete (PFRC). This paper presents the experimental results of 16 full-scale beams (eight RC, eight PFRC), 12 without transverse reinforcement. Polypropylene fibres (10 kg/m 3 ) were included. Mode of failure (MOF) in shear and behaviour throughout the loading process were studied. The results obtained with fibres showed significantly improved shear strength in the RC beams with/without transverse reinforcement. A synergy between transverse reinforcement and fibres was observed in some cases.File | Dimensione | Formato | |
---|---|---|---|
11311-1085504_Cuenca.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.78 MB
Formato
Adobe PDF
|
3.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.