As of today, most movie recommendation services base their recommendations on collaborative filtering (CF) and/or content-based filtering (CBF) models that use metadata (e.g., genre or cast). In most video-on-demand and streaming services, however, new movies and TV series are continuously added. CF models are unable to make predictions in such a scenario, since the newly added videos lack interactions—a problem technically known as new item cold start (CS). Currently, the most common approach to this problem is to switch to a purely CBF method, usually by exploiting textual metadata. This approach is known to have lower accuracy than CF because it ignores useful collaborative information and relies on human-generated textual metadata, which are expensive to collect and often prone to errors. User-generated content, such as tags, can also be rare or absent in CS situations. In this paper, we introduce a new movie recommender system that addresses the new item problem in the movie domain by (i) integrating state-of-the-art audio and visual descriptors, which can be automatically extracted from video content and constitute what we call the movie genome; (ii) exploiting an effective data fusion method named canonical correlation analysis, which was successfully tested in our previous works Deldjoo et al. (in: International Conference on Electronic Commerce and Web Technologies. Springer, Berlin, pp 34–45, 2016b; Proceedings of the Twelfth ACM Conference on Recommender Systems. ACM, 2018b), to better exploit complementary information between different modalities; (iii) proposing a two-step hybrid approach which trains a CF model on warm items (items with interactions) and leverages the learned model on the movie genome to recommend cold items (items without interactions). Experimental validation is carried out using a system-centric study on a large-scale, real-world movie recommendation dataset both in an absolute cold start and in a cold to warm transition; and a user-centric online experiment measuring different subjective aspects, such as satisfaction and diversity. Results show the benefits of this approach compared to existing approaches.

Movie genome: alleviating new item cold start in movie recommendation

Deldjoo, Yashar;Ferrari Dacrema, Maurizio;Cereda, Stefano;Cremonesi, Paolo
2019-01-01

Abstract

As of today, most movie recommendation services base their recommendations on collaborative filtering (CF) and/or content-based filtering (CBF) models that use metadata (e.g., genre or cast). In most video-on-demand and streaming services, however, new movies and TV series are continuously added. CF models are unable to make predictions in such a scenario, since the newly added videos lack interactions—a problem technically known as new item cold start (CS). Currently, the most common approach to this problem is to switch to a purely CBF method, usually by exploiting textual metadata. This approach is known to have lower accuracy than CF because it ignores useful collaborative information and relies on human-generated textual metadata, which are expensive to collect and often prone to errors. User-generated content, such as tags, can also be rare or absent in CS situations. In this paper, we introduce a new movie recommender system that addresses the new item problem in the movie domain by (i) integrating state-of-the-art audio and visual descriptors, which can be automatically extracted from video content and constitute what we call the movie genome; (ii) exploiting an effective data fusion method named canonical correlation analysis, which was successfully tested in our previous works Deldjoo et al. (in: International Conference on Electronic Commerce and Web Technologies. Springer, Berlin, pp 34–45, 2016b; Proceedings of the Twelfth ACM Conference on Recommender Systems. ACM, 2018b), to better exploit complementary information between different modalities; (iii) proposing a two-step hybrid approach which trains a CF model on warm items (items with interactions) and leverages the learned model on the movie genome to recommend cold items (items without interactions). Experimental validation is carried out using a system-centric study on a large-scale, real-world movie recommendation dataset both in an absolute cold start and in a cold to warm transition; and a user-centric online experiment measuring different subjective aspects, such as satisfaction and diversity. Results show the benefits of this approach compared to existing approaches.
2019
Audio descriptors; Canonical correlations analysis; Cold start; Collaborative-enriched content-based filtering; Content-based; Feature weighting; Hybrid recommender system; Movie recommender systems; Multimedia features; Multimodal fusion; New item; Semi-cold start; Visual descriptors; Warm start; 3304; Human-Computer Interaction; Computer Science Applications1707 Computer Vision and Pattern Recognition
File in questo prodotto:
File Dimensione Formato  
movie-genome-alleviating-new-item-cold-start-in-movie-recommendation.pdf

accesso aperto

: Publisher’s version
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1084448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 40
social impact